Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Science of Forecasting

03.12.2013
Mathematician Tilmann Gneiting is leader of the new research group “Computational Statistics” at HITS and Professor at the Karlsruhe Institute for Technology (KIT). His research focuses on the theory and practice of forecasts as well as on spatial statistics.

“Prediction is very difficult, especially about the future,” the Danish physicist Niels Bohr said – probably; because this quote has been attributed to at least five people. Probability is also linked to predictions, especially for such complex events like the weather and the economy. Tilmann Gneiting deals with the mathematical foundations of such predictions.


A 24-hour ensemble temperature forecast for Germany with eight different deterministic predictions.

Image: HITS/Gneiting

The mathematician has begun his work as leader of the newly established research group “Computational Statistics” at the Heidelberg Institute for Theoretical Studies (HITS) and W3 professor at the Institute of Stochastics at the Karlsruhe Institute for Technology (KIT). His research group is located at HITS. The joint appointment reflects the intensive cooperation between the institutions. With Tilmann Gneiting and Alexandros Stamatakis (Bioinformatics), two HITS researchers now are professors at the KIT.

“The new group is an important element of our concept”, says Klaus Tschira, who established the HITS as a non-profit research institute of the Klaus Tschira Foundation in 2010. “After all, the amount of data in science is increasing exponentially, and mathematical methods are essential for making sense of big data.”

Tilmann Gneiting (47) studied mathematics and geoecology at the Universities of Stuttgart and Bayreuth and Boston University. After having received his Ph.D. from the University of Bayreuth in 1997, he held faculty positions in the Department of Statistics at the University of Washington in Seattle (U.S.), where he completed the tenure track from assistant professor to full professor. Gneiting, born in Backnang, returned to Germany in 2009 with the support of the Alfried Krupp von Bohlen und Halbach Foundation, and started work as Professor of Mathematical Statistics at the Institute for Applied Mathematics at the University of Heidelberg. In 2011, he was awarded an ERC Advanced Grant of 1.7 million Euro in support of his research.

Tilmann Gneiting’s work focuses on two main areas: the theory and practice of forecasts, and spatial statistics. “There has been a paradigm shift from deterministic to probabilistic forecasting”, Tilmann Gneiting says. “In weather forecasts, we no longer simply claim that it will rain tomorrow. Instead, we state how probable it is that it will rain tomorrow. While probabilistic forecasts might be inconvenient for decision makers, as they take account of intrinsic uncertainties, they get closer to the truth and allow for better decisions.”

Scientists now frequently use so-called ensemble forecasts that comprise a collection of deterministic predictions, by running a predictive model multiple times, using modified initial values and process parameters. On the basis of the ensemble forecast, probability statements for future events can be generated.

Several years ago, Tilmann Gneiting and his U.S. colleagues created a real-time probabilistic weather forecast website for the state of Washington. These real-time predictions are available online at http://www.probcast.com. For this, Gneiting combined ensemble forecasts with newly developed statistical methods, feeding weather events of the respective past month into the computer.

“Many national weather services now use this method”, Tilmann Gneiting says. He cooperates with numerous meteorological and hydrological organizations, such as the German Weather Service, the German Federal Institute for Hydrology, and the European Center for Medium-Range Weather Forecasts.

Gneiting also does research on economic forecasts. He currently works on papers concerning forecasts of economic quantities such as inflation rates or gross domestic product.

In his second research area, spatial statistics, Tilmann Gneiting and his research team create artificial worlds on the computer, which can be used to simulate natural features, such as wind fields or scenery. Using this “virtual material”, existing data can be made visible, be interpreted and augmented. This thread of basic research has numerous potential applications, For example, it might support as the search for ideal locations for renewable energy resources.

Press Contact:
Dr. Peter Saueressig
Public Relations
Heidelberg Institute for Theoretical Studies (HITS)
Phone: +49-6221-533245
Peter.saueressig@h-its.org
www.h-its.org
Twitter: @HITStudies
Margarete Lehné, M.A.
Press Officer
Karlsruhe Institute for Technology (KIT)
Phone: +49 721 608-48121
Fax: +49 721 608-43658
margarete.lehne@kit.edu
www.kit.edu
Scientific Contact:
Prof. Dr. Tilmann Gneiting
Group leader Computational Statistics (CST)
Heidelberg Institute for Theoretical Studies (HITS)
Phone: +49-6221-533287
tilmann.gneiting@h-its.org

Dr. Peter Saueressig | idw
Further information:
http://www.h-its.org
http://www.h-its.org/english/press/pressreleases.php?we_objectID=1038

More articles from Earth Sciences:

nachricht AWI researchers measure a record concentration of microplastic in arctic sea ice
24.04.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Climate change in a warmer-than-modern world: New findings of Kiel Researchers
24.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>