Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Science of Forecasting

03.12.2013
Mathematician Tilmann Gneiting is leader of the new research group “Computational Statistics” at HITS and Professor at the Karlsruhe Institute for Technology (KIT). His research focuses on the theory and practice of forecasts as well as on spatial statistics.

“Prediction is very difficult, especially about the future,” the Danish physicist Niels Bohr said – probably; because this quote has been attributed to at least five people. Probability is also linked to predictions, especially for such complex events like the weather and the economy. Tilmann Gneiting deals with the mathematical foundations of such predictions.


A 24-hour ensemble temperature forecast for Germany with eight different deterministic predictions.

Image: HITS/Gneiting

The mathematician has begun his work as leader of the newly established research group “Computational Statistics” at the Heidelberg Institute for Theoretical Studies (HITS) and W3 professor at the Institute of Stochastics at the Karlsruhe Institute for Technology (KIT). His research group is located at HITS. The joint appointment reflects the intensive cooperation between the institutions. With Tilmann Gneiting and Alexandros Stamatakis (Bioinformatics), two HITS researchers now are professors at the KIT.

“The new group is an important element of our concept”, says Klaus Tschira, who established the HITS as a non-profit research institute of the Klaus Tschira Foundation in 2010. “After all, the amount of data in science is increasing exponentially, and mathematical methods are essential for making sense of big data.”

Tilmann Gneiting (47) studied mathematics and geoecology at the Universities of Stuttgart and Bayreuth and Boston University. After having received his Ph.D. from the University of Bayreuth in 1997, he held faculty positions in the Department of Statistics at the University of Washington in Seattle (U.S.), where he completed the tenure track from assistant professor to full professor. Gneiting, born in Backnang, returned to Germany in 2009 with the support of the Alfried Krupp von Bohlen und Halbach Foundation, and started work as Professor of Mathematical Statistics at the Institute for Applied Mathematics at the University of Heidelberg. In 2011, he was awarded an ERC Advanced Grant of 1.7 million Euro in support of his research.

Tilmann Gneiting’s work focuses on two main areas: the theory and practice of forecasts, and spatial statistics. “There has been a paradigm shift from deterministic to probabilistic forecasting”, Tilmann Gneiting says. “In weather forecasts, we no longer simply claim that it will rain tomorrow. Instead, we state how probable it is that it will rain tomorrow. While probabilistic forecasts might be inconvenient for decision makers, as they take account of intrinsic uncertainties, they get closer to the truth and allow for better decisions.”

Scientists now frequently use so-called ensemble forecasts that comprise a collection of deterministic predictions, by running a predictive model multiple times, using modified initial values and process parameters. On the basis of the ensemble forecast, probability statements for future events can be generated.

Several years ago, Tilmann Gneiting and his U.S. colleagues created a real-time probabilistic weather forecast website for the state of Washington. These real-time predictions are available online at http://www.probcast.com. For this, Gneiting combined ensemble forecasts with newly developed statistical methods, feeding weather events of the respective past month into the computer.

“Many national weather services now use this method”, Tilmann Gneiting says. He cooperates with numerous meteorological and hydrological organizations, such as the German Weather Service, the German Federal Institute for Hydrology, and the European Center for Medium-Range Weather Forecasts.

Gneiting also does research on economic forecasts. He currently works on papers concerning forecasts of economic quantities such as inflation rates or gross domestic product.

In his second research area, spatial statistics, Tilmann Gneiting and his research team create artificial worlds on the computer, which can be used to simulate natural features, such as wind fields or scenery. Using this “virtual material”, existing data can be made visible, be interpreted and augmented. This thread of basic research has numerous potential applications, For example, it might support as the search for ideal locations for renewable energy resources.

Press Contact:
Dr. Peter Saueressig
Public Relations
Heidelberg Institute for Theoretical Studies (HITS)
Phone: +49-6221-533245
Peter.saueressig@h-its.org
www.h-its.org
Twitter: @HITStudies
Margarete Lehné, M.A.
Press Officer
Karlsruhe Institute for Technology (KIT)
Phone: +49 721 608-48121
Fax: +49 721 608-43658
margarete.lehne@kit.edu
www.kit.edu
Scientific Contact:
Prof. Dr. Tilmann Gneiting
Group leader Computational Statistics (CST)
Heidelberg Institute for Theoretical Studies (HITS)
Phone: +49-6221-533287
tilmann.gneiting@h-its.org

Dr. Peter Saueressig | idw
Further information:
http://www.h-its.org
http://www.h-its.org/english/press/pressreleases.php?we_objectID=1038

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>