Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scaling Up Gyroscopes: From Navigation to Measuring the Earth’s Rotation

08.05.2013
Accurately sensing rotation is important to a variety of technologies, from today’s smartphones to navigational instruments that help keep submarines, planes, and satellites on course.

In a paper accepted for publication in the American Institute of Physics’ journal Review of Scientific Instruments, researchers from the Technical University of Munich and New Zealand’s University of Canterbury discuss what are called “large ring laser gyroscopes” that are six orders of magnitude more sensitive than gyroscopes commercially available.

In part, the increased sensitivity comes from the scaled-up size – the largest of these gyroscopes encloses an area of 834 square meters – meaning these instruments are no longer compatible with navigation applications. In addition, a very involved series of corrections must be made when using these instruments to account for a variety of factors, including the gravitational attraction of the moon. According to the researchers, however, the progress in these devices has made possible entirely new applications in geodesy, geophysics, seismology, and testing theories in fundamental physics such as the effects of general relativity.

Ring laser gyroscopes rely on laser beams propagating in opposite directions along the same closed loop or “ring.” The beams interfere with one another forming a stable pattern, but that pattern shifts in direct proportion to the rotation rate of the whole laser-ring system (called the “Sagnac effect”). Large ring laser gyroscopes are attached to the Earth’s crust so that a shift in that pattern (seen as an observed beat note in an actively lasing device) is directly proportional to the rotation rate of the Earth. Perturbations in that rotation rate capture the momentum exchange between the atmosphere, hydrosphere, and lithosphere, and so large ring laser gyroscopes could be used to indirectly monitor the combined effects of variations in global air and water currents, for example.

They may also be used both to supplement and improve calculations currently made with Very Long Baseline Interferometry (VLBI) techniques for measuring the orientation of the instantaneous rotation axis of the Earth and the length of day. Additionally, changes in the ring’s orientation also shifts the beat note of the interferometer, making the large ring laser gyroscope useful for detecting tilts in the Earth’s crust, which current seismometers cannot distinguish from horizontal acceleration.

Article: "Large Ring Lasers for Rotation Sensing" is accepted for publication in the journal Review of Scientific Instruments.

Link: http://rsi.aip.org/resource/1/rsinak/v84/i4/p041101_s1

Authors: Karl Ulrich Schreiber (1, 2), Jon-Paul R. Wells (2)

(1) Technical University of Munich
(2) University of Canterbury

Catherine Meyers | Newswise
Further information:
http://www.aip.org

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>