Scaling Up Gyroscopes: From Navigation to Measuring the Earth’s Rotation

In a paper accepted for publication in the American Institute of Physics’ journal Review of Scientific Instruments, researchers from the Technical University of Munich and New Zealand’s University of Canterbury discuss what are called “large ring laser gyroscopes” that are six orders of magnitude more sensitive than gyroscopes commercially available.

In part, the increased sensitivity comes from the scaled-up size – the largest of these gyroscopes encloses an area of 834 square meters – meaning these instruments are no longer compatible with navigation applications. In addition, a very involved series of corrections must be made when using these instruments to account for a variety of factors, including the gravitational attraction of the moon. According to the researchers, however, the progress in these devices has made possible entirely new applications in geodesy, geophysics, seismology, and testing theories in fundamental physics such as the effects of general relativity.

Ring laser gyroscopes rely on laser beams propagating in opposite directions along the same closed loop or “ring.” The beams interfere with one another forming a stable pattern, but that pattern shifts in direct proportion to the rotation rate of the whole laser-ring system (called the “Sagnac effect”). Large ring laser gyroscopes are attached to the Earth’s crust so that a shift in that pattern (seen as an observed beat note in an actively lasing device) is directly proportional to the rotation rate of the Earth. Perturbations in that rotation rate capture the momentum exchange between the atmosphere, hydrosphere, and lithosphere, and so large ring laser gyroscopes could be used to indirectly monitor the combined effects of variations in global air and water currents, for example.

They may also be used both to supplement and improve calculations currently made with Very Long Baseline Interferometry (VLBI) techniques for measuring the orientation of the instantaneous rotation axis of the Earth and the length of day. Additionally, changes in the ring’s orientation also shifts the beat note of the interferometer, making the large ring laser gyroscope useful for detecting tilts in the Earth’s crust, which current seismometers cannot distinguish from horizontal acceleration.

Article: “Large Ring Lasers for Rotation Sensing” is accepted for publication in the journal Review of Scientific Instruments.

Link: http://rsi.aip.org/resource/1/rsinak/v84/i4/p041101_s1

Authors: Karl Ulrich Schreiber (1, 2), Jon-Paul R. Wells (2)

(1) Technical University of Munich
(2) University of Canterbury

Media Contact

Catherine Meyers Newswise

More Information:

http://www.aip.org

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors