Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellites Search for 770M Tons of Dust in the Air

14.09.2010
Using data from several research satellites, scientists at The University of Alabama in Huntsville will spend the next three years trying to understand the climate impacts of about 770 million tons of dust carried into the atmosphere every year from the Sahara.

Some Saharan dust falls back to Earth before it leaves Africa. Some of it streams out over the Atlantic Ocean or Mediterranean Sea, carried on the wind as far away as South America and the Southeastern United States. All of it has an as-yet unmeasured impact on Earth's energy budget and the climate by reflecting sunlight back into space.

"The people who build climate models make some assumptions about dust and its impact on the climate," said Dr. Sundar Christopher, a professor of atmospheric science at UAHuntsville. "We want to learn more about the characteristics of this dust, its concentrations in the atmosphere and its impact on the global energy budget so we can replace those assumptions with real data."

Dust is one kind of particle, or aerosol, that floats around in the atmosphere. Most of the recent research into aerosols has focused on particles made by humans, such as smoke, soot or other types of pollution.

"There has been a lot of research looking at the climate effects of man-made aerosols," Christopher said. "Particles from smoke and burning fossil fuels are tiny, sub-micron size. These tiny particles cool the atmosphere because they reflect sunlight back into space before it has a chance to heat the air. That means less solar energy is available at the surface to heat the planet."

Because they are so small, pollution aerosols don't have a significant effect on heat energy. That's why they usually have a net cooling effect on the atmosphere.

Dust particles, on the other hand, weighing in at a hefty 10+ microns (a human hair is about 100 microns in diameter) do absorb some solar radiation, convert it to heat and release that heat into the air. They also reflect some radiation back into space, so dust both heats and cools the atmosphere.

More importantly they have a significant effect on heat energy in the air. Dust absorbs thermal energy rising from the ground and re-radiates it either toward space (and colder temperatures) or back toward the surface.

"One thing we want to do is calculate how reflective dust is, because not all dust is created equal," Christopher said. "We're trying to calculate reflectivity so we can say with precision how much sunlight is being reflected."

The composition and shape of dust particles is very complex. They are not spherical, which makes calculating their energy budget challenging and time consuming. Also, the composition of dust varies depending on which part of the Sahara the dust comes from. Some of it absorbs more solar energy than others.

"Climate models are not very sophisticated in the way they handle dust," Christopher said. "And the long-wave or infrared part is something that has been ignored for a long time. We want to nail down those values."

Why start with the Sahara? First, the Sahara contributes about half of all of the dust carried into Earth's atmosphere every year. The Saharan dust is also more "pristine" than dust from U.S. or Asian deserts. Dust from U.S., Chinese or Mongolian deserts frequently mixes with pollution to create an aerosol stew, which can make it difficult to study just the dust.

Studying the Saharan dust is enough of a challenge, in part because it is made of the same stuff as the desert underneath. That means the dust in the atmosphere looks very much like the surface below it. Only in the past few years have new instruments and new techniques been developed that help scientists "see" which is dust and which is desert.

Christopher has received a grant of almost $500,000 through NASA's CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) program to support the research for the next three years. The CALIPSO satellite's instruments include a LIDAR, which shoots a laser into the atmosphere then catches light that bounces off particles in the air to learn more about aerosols.

Dr. Sundar Christopher, 256.961.7872
sundar.christopher@nsstc.uah.edu
Phillip Gentry, 256.961.7618
gentry@nsstc.uah.edu

Phillip Gentry | Newswise Science News
Further information:
http://www.nsstc.uah.edu

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>