Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellites Search for 770M Tons of Dust in the Air

14.09.2010
Using data from several research satellites, scientists at The University of Alabama in Huntsville will spend the next three years trying to understand the climate impacts of about 770 million tons of dust carried into the atmosphere every year from the Sahara.

Some Saharan dust falls back to Earth before it leaves Africa. Some of it streams out over the Atlantic Ocean or Mediterranean Sea, carried on the wind as far away as South America and the Southeastern United States. All of it has an as-yet unmeasured impact on Earth's energy budget and the climate by reflecting sunlight back into space.

"The people who build climate models make some assumptions about dust and its impact on the climate," said Dr. Sundar Christopher, a professor of atmospheric science at UAHuntsville. "We want to learn more about the characteristics of this dust, its concentrations in the atmosphere and its impact on the global energy budget so we can replace those assumptions with real data."

Dust is one kind of particle, or aerosol, that floats around in the atmosphere. Most of the recent research into aerosols has focused on particles made by humans, such as smoke, soot or other types of pollution.

"There has been a lot of research looking at the climate effects of man-made aerosols," Christopher said. "Particles from smoke and burning fossil fuels are tiny, sub-micron size. These tiny particles cool the atmosphere because they reflect sunlight back into space before it has a chance to heat the air. That means less solar energy is available at the surface to heat the planet."

Because they are so small, pollution aerosols don't have a significant effect on heat energy. That's why they usually have a net cooling effect on the atmosphere.

Dust particles, on the other hand, weighing in at a hefty 10+ microns (a human hair is about 100 microns in diameter) do absorb some solar radiation, convert it to heat and release that heat into the air. They also reflect some radiation back into space, so dust both heats and cools the atmosphere.

More importantly they have a significant effect on heat energy in the air. Dust absorbs thermal energy rising from the ground and re-radiates it either toward space (and colder temperatures) or back toward the surface.

"One thing we want to do is calculate how reflective dust is, because not all dust is created equal," Christopher said. "We're trying to calculate reflectivity so we can say with precision how much sunlight is being reflected."

The composition and shape of dust particles is very complex. They are not spherical, which makes calculating their energy budget challenging and time consuming. Also, the composition of dust varies depending on which part of the Sahara the dust comes from. Some of it absorbs more solar energy than others.

"Climate models are not very sophisticated in the way they handle dust," Christopher said. "And the long-wave or infrared part is something that has been ignored for a long time. We want to nail down those values."

Why start with the Sahara? First, the Sahara contributes about half of all of the dust carried into Earth's atmosphere every year. The Saharan dust is also more "pristine" than dust from U.S. or Asian deserts. Dust from U.S., Chinese or Mongolian deserts frequently mixes with pollution to create an aerosol stew, which can make it difficult to study just the dust.

Studying the Saharan dust is enough of a challenge, in part because it is made of the same stuff as the desert underneath. That means the dust in the atmosphere looks very much like the surface below it. Only in the past few years have new instruments and new techniques been developed that help scientists "see" which is dust and which is desert.

Christopher has received a grant of almost $500,000 through NASA's CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) program to support the research for the next three years. The CALIPSO satellite's instruments include a LIDAR, which shoots a laser into the atmosphere then catches light that bounces off particles in the air to learn more about aerosols.

Dr. Sundar Christopher, 256.961.7872
sundar.christopher@nsstc.uah.edu
Phillip Gentry, 256.961.7618
gentry@nsstc.uah.edu

Phillip Gentry | Newswise Science News
Further information:
http://www.nsstc.uah.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>