Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellites pinpoint drivers of urban heat islands in the northeast

14.12.2010
The size, background ecology, and development patterns of major northeastern cities combine to make them unusually warm, according to NASA scientists who presented new research today at an American Geophysical Union meeting, in San Francisco, Calif.

Summer land surface temperatures of cities in the Northeast were an average of 13°F to 16°F (7°C to 9°C) warmer than surrounding rural areas over a three year period, the new research shows. The complex phenomenon that drives up temperatures of cities such as Boston, Philadelphia, and Washington D.C. is called the urban heat island effect.

By comparing 42 cities in the Northeast, the researchers have demonstrated that a city's development pattern can have a significant impact on the strength of a city's heat island. They found that densely-developed cities with compact urban cores are more apt to produce strong urban heat islands than more sprawling, less intensely-developed cities.

The new research relating development patterns and heat islands is part of a broader effort by scientists at NASA's Goddard Space Flight Center in Greenbelt, Md. to study urban heat islands all around the globe. By analyzing data from thousands of settlements, the Goddard team has pinpointed a set of key city characteristics that drive the development of strong heat islands.

"This, at least to our knowledge, is the first time that anybody has systematically compared the heat islands of a large number of cities at continental and global scales," said Ping Zhang, a researcher at Goddard and the lead author of the research.

The largest cities, their analysis shows, usually have the strongest heat islands. Cities located in forested regions, such as the northeastern United States, also have stronger heat islands than cities situated in grassy or desert environments.

"The urban heat island is a relative measure comparing the temperature of the urban core to the surrounding area," said Marc Imhoff, the leader of the NASA Goddard research group. "As a result, the condition of the rural land around the city matters a great deal."

The method used to compare the cities, which the team of scientists has honed for about two years, involves the use of maps of impervious surface area produced by the United States Geological Survey-operated Landsat satellite, and surface temperature data from the Moderate-resolution Imaging Spectroradiometer (MODIS), an instrument aboard NASA's Aqua and Terra satellites.

Development produces heat islands by replacing vegetation, particularly forests, with pavement, buildings, and other infrastructure. This limits plant transpiration, an evaporative process that helps cool plant leaves and results in cooler air temperatures, explained Robert Wolfe, one of the Goddard scientists who conducted the new research.

Dark city infrastructure, such as black roofs, also makes urban areas more apt to absorb and retain heat. Heat generated by motor vehicles, factories, and homes also contributes to the development of urban heat islands.

Of the 42 northeastern U.S. cities most-recently analyzed, Providence, R.I.; Washington, D.C.; Philadelphia, Pa.; Baltimore, Md.; Boston, Mass.; and Pittsburgh, Pa. had some of the strongest heat islands.

For more information about this topic, please visit this page:
http://www.nasa.gov/topics/earth/features/heat-island-sprawl.html

Sarah DeWitt | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/heat-island-sprawl.html

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>