Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellites pinpoint drivers of urban heat islands in the northeast

14.12.2010
The size, background ecology, and development patterns of major northeastern cities combine to make them unusually warm, according to NASA scientists who presented new research today at an American Geophysical Union meeting, in San Francisco, Calif.

Summer land surface temperatures of cities in the Northeast were an average of 13°F to 16°F (7°C to 9°C) warmer than surrounding rural areas over a three year period, the new research shows. The complex phenomenon that drives up temperatures of cities such as Boston, Philadelphia, and Washington D.C. is called the urban heat island effect.

By comparing 42 cities in the Northeast, the researchers have demonstrated that a city's development pattern can have a significant impact on the strength of a city's heat island. They found that densely-developed cities with compact urban cores are more apt to produce strong urban heat islands than more sprawling, less intensely-developed cities.

The new research relating development patterns and heat islands is part of a broader effort by scientists at NASA's Goddard Space Flight Center in Greenbelt, Md. to study urban heat islands all around the globe. By analyzing data from thousands of settlements, the Goddard team has pinpointed a set of key city characteristics that drive the development of strong heat islands.

"This, at least to our knowledge, is the first time that anybody has systematically compared the heat islands of a large number of cities at continental and global scales," said Ping Zhang, a researcher at Goddard and the lead author of the research.

The largest cities, their analysis shows, usually have the strongest heat islands. Cities located in forested regions, such as the northeastern United States, also have stronger heat islands than cities situated in grassy or desert environments.

"The urban heat island is a relative measure comparing the temperature of the urban core to the surrounding area," said Marc Imhoff, the leader of the NASA Goddard research group. "As a result, the condition of the rural land around the city matters a great deal."

The method used to compare the cities, which the team of scientists has honed for about two years, involves the use of maps of impervious surface area produced by the United States Geological Survey-operated Landsat satellite, and surface temperature data from the Moderate-resolution Imaging Spectroradiometer (MODIS), an instrument aboard NASA's Aqua and Terra satellites.

Development produces heat islands by replacing vegetation, particularly forests, with pavement, buildings, and other infrastructure. This limits plant transpiration, an evaporative process that helps cool plant leaves and results in cooler air temperatures, explained Robert Wolfe, one of the Goddard scientists who conducted the new research.

Dark city infrastructure, such as black roofs, also makes urban areas more apt to absorb and retain heat. Heat generated by motor vehicles, factories, and homes also contributes to the development of urban heat islands.

Of the 42 northeastern U.S. cities most-recently analyzed, Providence, R.I.; Washington, D.C.; Philadelphia, Pa.; Baltimore, Md.; Boston, Mass.; and Pittsburgh, Pa. had some of the strongest heat islands.

For more information about this topic, please visit this page:
http://www.nasa.gov/topics/earth/features/heat-island-sprawl.html

Sarah DeWitt | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/heat-island-sprawl.html

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>