Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellites pinpoint drivers of urban heat islands in the northeast

14.12.2010
The size, background ecology, and development patterns of major northeastern cities combine to make them unusually warm, according to NASA scientists who presented new research today at an American Geophysical Union meeting, in San Francisco, Calif.

Summer land surface temperatures of cities in the Northeast were an average of 13°F to 16°F (7°C to 9°C) warmer than surrounding rural areas over a three year period, the new research shows. The complex phenomenon that drives up temperatures of cities such as Boston, Philadelphia, and Washington D.C. is called the urban heat island effect.

By comparing 42 cities in the Northeast, the researchers have demonstrated that a city's development pattern can have a significant impact on the strength of a city's heat island. They found that densely-developed cities with compact urban cores are more apt to produce strong urban heat islands than more sprawling, less intensely-developed cities.

The new research relating development patterns and heat islands is part of a broader effort by scientists at NASA's Goddard Space Flight Center in Greenbelt, Md. to study urban heat islands all around the globe. By analyzing data from thousands of settlements, the Goddard team has pinpointed a set of key city characteristics that drive the development of strong heat islands.

"This, at least to our knowledge, is the first time that anybody has systematically compared the heat islands of a large number of cities at continental and global scales," said Ping Zhang, a researcher at Goddard and the lead author of the research.

The largest cities, their analysis shows, usually have the strongest heat islands. Cities located in forested regions, such as the northeastern United States, also have stronger heat islands than cities situated in grassy or desert environments.

"The urban heat island is a relative measure comparing the temperature of the urban core to the surrounding area," said Marc Imhoff, the leader of the NASA Goddard research group. "As a result, the condition of the rural land around the city matters a great deal."

The method used to compare the cities, which the team of scientists has honed for about two years, involves the use of maps of impervious surface area produced by the United States Geological Survey-operated Landsat satellite, and surface temperature data from the Moderate-resolution Imaging Spectroradiometer (MODIS), an instrument aboard NASA's Aqua and Terra satellites.

Development produces heat islands by replacing vegetation, particularly forests, with pavement, buildings, and other infrastructure. This limits plant transpiration, an evaporative process that helps cool plant leaves and results in cooler air temperatures, explained Robert Wolfe, one of the Goddard scientists who conducted the new research.

Dark city infrastructure, such as black roofs, also makes urban areas more apt to absorb and retain heat. Heat generated by motor vehicles, factories, and homes also contributes to the development of urban heat islands.

Of the 42 northeastern U.S. cities most-recently analyzed, Providence, R.I.; Washington, D.C.; Philadelphia, Pa.; Baltimore, Md.; Boston, Mass.; and Pittsburgh, Pa. had some of the strongest heat islands.

For more information about this topic, please visit this page:
http://www.nasa.gov/topics/earth/features/heat-island-sprawl.html

Sarah DeWitt | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/heat-island-sprawl.html

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>