Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellites capture the birth and movement of Tropical Storm Cristobal

26.08.2014

The third tropical storm of the Atlantic hurricane season formed near the southeastern Bahamas on Sunday, August 24. NASA's Aqua satellite and NOAA's GOES-East satellites provided imagery of the storm's birth and movement.

System 96L lingered in the eastern Caribbean over the last couple of days and on Saturday, August 23, became a tropical depression. That depression strengthened into a tropical storm during the morning of August 24. A GOES-East satellite image was taken at 9:30 a.m. EDT on August 24 showed Cristobal as a rounded area of clouds north of Hispaniola (Haiti and the Dominican Republic) moving into the southeastern Bahamas. The GOES image was created at NASA's GOES Project office in NASA's Goddard Space Flight Center in Greenbelt, Maryland.


NOAA's GOES-East satellite saw Tropical Storm Cristobal form north of Hispaniola on Sunday, Aug. 24.

Credit: NASA/NOAA GOES Project

Upon its birth Cristobal had sparked Tropical Storm Warnings for Southeastern Bahamas, Including the Acklins, Crooked Island, Long Cay, the Inaguas, Mayaguana, the Ragged Islands, as well as the Turks and Caicos Islands, Central Bahamas, Including Cat Island, The Exumas, Long Island, Rum Cay, and San Salvador.

At 8 a.m. EDT on August 24, Cristobal's maximum sustained winds were near 45 mph (75 kph). The center of Tropical Storm Cristobal was located near latitude 23.0 north and longitude 73.0 west. That put the center just 40 miles (60 km) north of Mayaguana Island. A day later, Monday, August 24, Cristobal was still dropping heavy rainfall over the Turks and Caicos Islands as it moved slowly and erratically to the north-northeast.

Heavy rainfall is a problem for the islands because Cristobal is moving so slowly. The National Hurricane Center noted that the tropical storm is expected to produce rainfall totals of 4 to 8 inches over the Turks and Caicos as well as portions of the southeastern and central Bahamas through Tuesday, with isolated amounts around 12 inches possible. Minor flooding was already reported during the morning of August 25 near Pirates Cove on Mayaguana Island.

On August 24 at 15:55 UTC (11:55 a.m. EDT) Cristobal's center appeared near Turks and Caicos Islands in this visible image from the Moderate Imaging Resolution Spectroradiometer (MODIS) instrument aboard NASA's Terra satellite. In the MODIS image, it appeared that northerly wind shear was affecting the storm, blowing most of the strongest clouds and thunderstorms south of the center.

By August 25, the wind shear had not let up. The National Hurricane Center described the storm as remaining sheared with the low-level center fully exposed on the north side of the "deep convective cloud mass (the area of the strongest thunderstorms)."

At 11 a.m. EDT (1500 UTC) Cristobal was centered about 120 miles (195 km) east-northeast of San Salvador Island, Bahamas, and 715 miles (1,150 km) southwest of Bermuda. That puts the center of Tropical Storm Cristobel near latitude 24.6 north and longitude 72.7 west. Cristobal's maximum sustained winds were near 60 mph (95 kph) and some strengthening is expected over the next two days. Cristobal is moving toward the north-northeast near 2 mph (4 kph) and is expected to turn northeast and speed up on Tuesday.

The government of Bahamas has discontinued the tropical storm warning for the central Bahamas.

The National Hurricane Center noted that a strong, elongated area of low pressure (a trough) just of the U.S. east coast is forecast to capture Cristobal and gradually lift out the cyclone to the northeast.

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov

Further reports about: Bahamas Flight Hurricane Island Islands NASA Space UTC clouds movement rainfall satellite thunderstorms winds

More articles from Earth Sciences:

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

nachricht Rutgers scientists help create world's largest coral gene database
24.05.2016 | Rutgers University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>