Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellites capture the birth and movement of Tropical Storm Cristobal

26.08.2014

The third tropical storm of the Atlantic hurricane season formed near the southeastern Bahamas on Sunday, August 24. NASA's Aqua satellite and NOAA's GOES-East satellites provided imagery of the storm's birth and movement.

System 96L lingered in the eastern Caribbean over the last couple of days and on Saturday, August 23, became a tropical depression. That depression strengthened into a tropical storm during the morning of August 24. A GOES-East satellite image was taken at 9:30 a.m. EDT on August 24 showed Cristobal as a rounded area of clouds north of Hispaniola (Haiti and the Dominican Republic) moving into the southeastern Bahamas. The GOES image was created at NASA's GOES Project office in NASA's Goddard Space Flight Center in Greenbelt, Maryland.


NOAA's GOES-East satellite saw Tropical Storm Cristobal form north of Hispaniola on Sunday, Aug. 24.

Credit: NASA/NOAA GOES Project

Upon its birth Cristobal had sparked Tropical Storm Warnings for Southeastern Bahamas, Including the Acklins, Crooked Island, Long Cay, the Inaguas, Mayaguana, the Ragged Islands, as well as the Turks and Caicos Islands, Central Bahamas, Including Cat Island, The Exumas, Long Island, Rum Cay, and San Salvador.

At 8 a.m. EDT on August 24, Cristobal's maximum sustained winds were near 45 mph (75 kph). The center of Tropical Storm Cristobal was located near latitude 23.0 north and longitude 73.0 west. That put the center just 40 miles (60 km) north of Mayaguana Island. A day later, Monday, August 24, Cristobal was still dropping heavy rainfall over the Turks and Caicos Islands as it moved slowly and erratically to the north-northeast.

Heavy rainfall is a problem for the islands because Cristobal is moving so slowly. The National Hurricane Center noted that the tropical storm is expected to produce rainfall totals of 4 to 8 inches over the Turks and Caicos as well as portions of the southeastern and central Bahamas through Tuesday, with isolated amounts around 12 inches possible. Minor flooding was already reported during the morning of August 25 near Pirates Cove on Mayaguana Island.

On August 24 at 15:55 UTC (11:55 a.m. EDT) Cristobal's center appeared near Turks and Caicos Islands in this visible image from the Moderate Imaging Resolution Spectroradiometer (MODIS) instrument aboard NASA's Terra satellite. In the MODIS image, it appeared that northerly wind shear was affecting the storm, blowing most of the strongest clouds and thunderstorms south of the center.

By August 25, the wind shear had not let up. The National Hurricane Center described the storm as remaining sheared with the low-level center fully exposed on the north side of the "deep convective cloud mass (the area of the strongest thunderstorms)."

At 11 a.m. EDT (1500 UTC) Cristobal was centered about 120 miles (195 km) east-northeast of San Salvador Island, Bahamas, and 715 miles (1,150 km) southwest of Bermuda. That puts the center of Tropical Storm Cristobel near latitude 24.6 north and longitude 72.7 west. Cristobal's maximum sustained winds were near 60 mph (95 kph) and some strengthening is expected over the next two days. Cristobal is moving toward the north-northeast near 2 mph (4 kph) and is expected to turn northeast and speed up on Tuesday.

The government of Bahamas has discontinued the tropical storm warning for the central Bahamas.

The National Hurricane Center noted that a strong, elongated area of low pressure (a trough) just of the U.S. east coast is forecast to capture Cristobal and gradually lift out the cyclone to the northeast.

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov

Further reports about: Bahamas Flight Hurricane Island Islands NASA Space UTC clouds movement rainfall satellite thunderstorms winds

More articles from Earth Sciences:

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Sea level as a metronome of Earth's history
19.05.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>