Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellites capture the birth and movement of Tropical Storm Cristobal

26.08.2014

The third tropical storm of the Atlantic hurricane season formed near the southeastern Bahamas on Sunday, August 24. NASA's Aqua satellite and NOAA's GOES-East satellites provided imagery of the storm's birth and movement.

System 96L lingered in the eastern Caribbean over the last couple of days and on Saturday, August 23, became a tropical depression. That depression strengthened into a tropical storm during the morning of August 24. A GOES-East satellite image was taken at 9:30 a.m. EDT on August 24 showed Cristobal as a rounded area of clouds north of Hispaniola (Haiti and the Dominican Republic) moving into the southeastern Bahamas. The GOES image was created at NASA's GOES Project office in NASA's Goddard Space Flight Center in Greenbelt, Maryland.


NOAA's GOES-East satellite saw Tropical Storm Cristobal form north of Hispaniola on Sunday, Aug. 24.

Credit: NASA/NOAA GOES Project

Upon its birth Cristobal had sparked Tropical Storm Warnings for Southeastern Bahamas, Including the Acklins, Crooked Island, Long Cay, the Inaguas, Mayaguana, the Ragged Islands, as well as the Turks and Caicos Islands, Central Bahamas, Including Cat Island, The Exumas, Long Island, Rum Cay, and San Salvador.

At 8 a.m. EDT on August 24, Cristobal's maximum sustained winds were near 45 mph (75 kph). The center of Tropical Storm Cristobal was located near latitude 23.0 north and longitude 73.0 west. That put the center just 40 miles (60 km) north of Mayaguana Island. A day later, Monday, August 24, Cristobal was still dropping heavy rainfall over the Turks and Caicos Islands as it moved slowly and erratically to the north-northeast.

Heavy rainfall is a problem for the islands because Cristobal is moving so slowly. The National Hurricane Center noted that the tropical storm is expected to produce rainfall totals of 4 to 8 inches over the Turks and Caicos as well as portions of the southeastern and central Bahamas through Tuesday, with isolated amounts around 12 inches possible. Minor flooding was already reported during the morning of August 25 near Pirates Cove on Mayaguana Island.

On August 24 at 15:55 UTC (11:55 a.m. EDT) Cristobal's center appeared near Turks and Caicos Islands in this visible image from the Moderate Imaging Resolution Spectroradiometer (MODIS) instrument aboard NASA's Terra satellite. In the MODIS image, it appeared that northerly wind shear was affecting the storm, blowing most of the strongest clouds and thunderstorms south of the center.

By August 25, the wind shear had not let up. The National Hurricane Center described the storm as remaining sheared with the low-level center fully exposed on the north side of the "deep convective cloud mass (the area of the strongest thunderstorms)."

At 11 a.m. EDT (1500 UTC) Cristobal was centered about 120 miles (195 km) east-northeast of San Salvador Island, Bahamas, and 715 miles (1,150 km) southwest of Bermuda. That puts the center of Tropical Storm Cristobel near latitude 24.6 north and longitude 72.7 west. Cristobal's maximum sustained winds were near 60 mph (95 kph) and some strengthening is expected over the next two days. Cristobal is moving toward the north-northeast near 2 mph (4 kph) and is expected to turn northeast and speed up on Tuesday.

The government of Bahamas has discontinued the tropical storm warning for the central Bahamas.

The National Hurricane Center noted that a strong, elongated area of low pressure (a trough) just of the U.S. east coast is forecast to capture Cristobal and gradually lift out the cyclone to the northeast.

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov

Further reports about: Bahamas Flight Hurricane Island Islands NASA Space UTC clouds movement rainfall satellite thunderstorms winds

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>