Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite trio to explore the Earth's magnetic field

22.11.2013
Textbook launch for the SWARM satellites

In a dense fog, a Russian Rockot rocket on 22 November 2013 cleared the launchpad of the Baikonur Cosmodrome on schedule at 13:02:15 CET.


SWARM-Konstellation (Abbildung: ESA/AOES Medialab)

In the tip of the rocket: three identical satellites to measure the Earth's magnetic field. A good hour and a half later, at 14:37:48 CET, the report of success: all three satellites separated seamlessly from the carrier rocket and the ground stations Kiruna (Sweden) and Longyearbyen /Svalbard (Norway) were able to establish radio contact with them.

GFZ scientists and invited guests observed the start of the mission called SWARM of the European Space Agency in Darmstadt via remote transmission.

Professor Johanna Wanka, Federal Minister of Education and Research said on the occasion of the perfect start of the mission: "We are very pleased that this European mission has started so smoothly.The magnetic field of the Earth is our shield against cosmic particle radiation. But it is subject to natural fluctuations, from the Earth's interior or eruptions on the Sun. Improving the exploration of its function and recording space weather data more accurately allows us to draw conclusions for life on our planet."

Professor Reinhard Huettl, Chairman of the Board of the GFZ German Research Centre for Geosciences pointed out a Potsdam success story: "The three satellites are direct developments from the CHAMP mission of the GFZ, which was launched in 2000. CHAMP with his followers GRACE and SWARM proves to be the founding father of a whole generation of satellites and space-based measurement methods."

A trio for the magnetic field

SWARM is an ESA mission as part of its "Living Planet" program. "The satellite swarm - hence the name - is to measure the Earth's magnetic field from space with unprecedented precision for at least four years", elaborated Professor Huettl. For this, the three satellites fly in an optimized formation: two satellites (SWARM-A, SWARM-B) fly in an altitude of 450 kilometers with a distance of 150 kilometers alongside one another, the third (SWARM-C) ascends into a higher orbit at 530 km altitude. The reason for this complex formation flight lies in the magnetic field itself: it is generated by the flow of electrically conducting liquid iron in the outer core oft he Earth, 2900 kilometers beneath our feet.

It is influenced by the conductivity and the dynamics of the overlying mantle (up to 40 kilometers below the Earth's surface). Finally, the magnetized rocks of the Earth's crust contribute to the Earth's magnetic field. In addition, the sun and currents in near-Earth space influence the Earth's magnetic field from the outside. In order to study these individual components, the total signal of the magnetic field measured by the satellite needs to be separated into its individual components.

"From its distance of 150 kilometers, the lower flying SWARM pair can look at the magnetic field of the Earth's crust with a stereo view", explains Professor Hermann Lühr , one of the three Principle Investigators of the mission, member of the SWARM Mission Advisory Group and Head of the German SWARM Project Office at the GFZ. "We can therefore analyze this component with very high accuracy." The third, upper SWARM satellite can in turn precisely determine the force of the magnetic field as it decreases with increasing altitude. Also, over time this satellite flies in a progressively increasing angle to the path of the lower pair. The total measurement will give a picture of the earth's magnetic field with a precision never achieved before.

Almost as a side effect, the possibility arises to observe space weather more accurately. What is understood by this are flares of our sun, but also magnetic storms generated by distant stars that can interfere with or even paralyze our technical civilization. For example, a strong solar storm in 1989 caused a breakdown of the electricity supply in Canada.

The Role of the GFZ in the SWARM Mission

The exploration of the Earth's magnetic field has been part of the work program of the GFZ German Research Centre for Geosciences since its inception. Furthermore, the GFZ has experience with missions of this kind, particularly with its own satellite missions CHAMP and GRACE. The German Aerospace Center (DLR) therefore decided to set up the SWARM project office at the GFZ. This office serves as the coordination unit and is the interface fort he use of SWARM data and its data products. During the mission, it coordinates the German incentive programs and ESA's calls for proposals.

"In the preparatory stage, the lessons learned from the CHAMP and GRACE mission supported the technical assistance in planning and manufacturing the satellites", said Hermann Lühr (GFZ). "CHAMP was the model for the SWARM satellite fleet." This also applies to data processing and development of superior data products. Hermann Lühr: "The huge amounts of data must be processed, analyzed and condensed into concrete results. GFZ staff with experience from previous satellite missions are working in the European SCARF consortium to generate higher quality data products that are suitable for immediate use." SCARF stands for Satellite Constellation Application and Research Facility.

About the satellites

The three SWARM satellites together cost about 220 million euros, each weighs 500 kg. Inside the carrier rocket, a four-meter long measuring arm is folded on the back of the five meter long satellite body. This boom is folded out several hours after the deployment of the satellite, once the on-board operating system has been initiated. The reason for this is that the surface of the satellite is equipped with solar cells for the power supply. The magnetic field generated by the current, however, would interfere with the measurement, therefore, the magnetic field measuring instruments are mounted on the measuring arm.

At the tip of the boom, the particularly sensitive apparatus for measuring the magnetic field strength is installed, the sensors for determining the direction of the magnetic field are in its center. In the same position, three star sensors allow the satellite to determine and corrected its location.

To begin with, the three satellites fly parallel on a north-south path at about 88° inclination. Swarm-C is then slowly deflected by 30° per year and thus continues to fly at an increasing angle to the orbit of Swarm-A and -B.

Pictures in a printable resolution can be found here:
http://www.gfz-potsdam.de/medien-kommunikation/bildarchiv/gfz-satellitenmissionen/swarm/
Movies can be downloaded from:
ftp://ftp.gfz-potsdam.de/pub/incoming/PR/SWARM
Franz Ossing
Helmholtz Centre Potsdam
GFZ German Research Centre for Geosciences
Deutsches GeoForschungsZentrum
- Kommunikation und Medien, Leitung -
Telegrafenberg
14473 Potsdam / Germany
e-mail: ossing@gfz-potsdam.de
Tel. +49 (0)331-288 1040
Fax +49 (0)331-288 1044

Franz Ossing | GFZ Potsdam
Further information:
http://www.gfz-potsdam.de/

Further reports about: Earth's magnetic field GFZ Geosciences SCARF Swarm magnetic field solar cell

More articles from Earth Sciences:

nachricht Mountain glaciers shrinking across the West
23.10.2017 | University of Washington

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>