Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite trio to explore the Earth's magnetic field

22.11.2013
Textbook launch for the SWARM satellites

In a dense fog, a Russian Rockot rocket on 22 November 2013 cleared the launchpad of the Baikonur Cosmodrome on schedule at 13:02:15 CET.


SWARM-Konstellation (Abbildung: ESA/AOES Medialab)

In the tip of the rocket: three identical satellites to measure the Earth's magnetic field. A good hour and a half later, at 14:37:48 CET, the report of success: all three satellites separated seamlessly from the carrier rocket and the ground stations Kiruna (Sweden) and Longyearbyen /Svalbard (Norway) were able to establish radio contact with them.

GFZ scientists and invited guests observed the start of the mission called SWARM of the European Space Agency in Darmstadt via remote transmission.

Professor Johanna Wanka, Federal Minister of Education and Research said on the occasion of the perfect start of the mission: "We are very pleased that this European mission has started so smoothly.The magnetic field of the Earth is our shield against cosmic particle radiation. But it is subject to natural fluctuations, from the Earth's interior or eruptions on the Sun. Improving the exploration of its function and recording space weather data more accurately allows us to draw conclusions for life on our planet."

Professor Reinhard Huettl, Chairman of the Board of the GFZ German Research Centre for Geosciences pointed out a Potsdam success story: "The three satellites are direct developments from the CHAMP mission of the GFZ, which was launched in 2000. CHAMP with his followers GRACE and SWARM proves to be the founding father of a whole generation of satellites and space-based measurement methods."

A trio for the magnetic field

SWARM is an ESA mission as part of its "Living Planet" program. "The satellite swarm - hence the name - is to measure the Earth's magnetic field from space with unprecedented precision for at least four years", elaborated Professor Huettl. For this, the three satellites fly in an optimized formation: two satellites (SWARM-A, SWARM-B) fly in an altitude of 450 kilometers with a distance of 150 kilometers alongside one another, the third (SWARM-C) ascends into a higher orbit at 530 km altitude. The reason for this complex formation flight lies in the magnetic field itself: it is generated by the flow of electrically conducting liquid iron in the outer core oft he Earth, 2900 kilometers beneath our feet.

It is influenced by the conductivity and the dynamics of the overlying mantle (up to 40 kilometers below the Earth's surface). Finally, the magnetized rocks of the Earth's crust contribute to the Earth's magnetic field. In addition, the sun and currents in near-Earth space influence the Earth's magnetic field from the outside. In order to study these individual components, the total signal of the magnetic field measured by the satellite needs to be separated into its individual components.

"From its distance of 150 kilometers, the lower flying SWARM pair can look at the magnetic field of the Earth's crust with a stereo view", explains Professor Hermann Lühr , one of the three Principle Investigators of the mission, member of the SWARM Mission Advisory Group and Head of the German SWARM Project Office at the GFZ. "We can therefore analyze this component with very high accuracy." The third, upper SWARM satellite can in turn precisely determine the force of the magnetic field as it decreases with increasing altitude. Also, over time this satellite flies in a progressively increasing angle to the path of the lower pair. The total measurement will give a picture of the earth's magnetic field with a precision never achieved before.

Almost as a side effect, the possibility arises to observe space weather more accurately. What is understood by this are flares of our sun, but also magnetic storms generated by distant stars that can interfere with or even paralyze our technical civilization. For example, a strong solar storm in 1989 caused a breakdown of the electricity supply in Canada.

The Role of the GFZ in the SWARM Mission

The exploration of the Earth's magnetic field has been part of the work program of the GFZ German Research Centre for Geosciences since its inception. Furthermore, the GFZ has experience with missions of this kind, particularly with its own satellite missions CHAMP and GRACE. The German Aerospace Center (DLR) therefore decided to set up the SWARM project office at the GFZ. This office serves as the coordination unit and is the interface fort he use of SWARM data and its data products. During the mission, it coordinates the German incentive programs and ESA's calls for proposals.

"In the preparatory stage, the lessons learned from the CHAMP and GRACE mission supported the technical assistance in planning and manufacturing the satellites", said Hermann Lühr (GFZ). "CHAMP was the model for the SWARM satellite fleet." This also applies to data processing and development of superior data products. Hermann Lühr: "The huge amounts of data must be processed, analyzed and condensed into concrete results. GFZ staff with experience from previous satellite missions are working in the European SCARF consortium to generate higher quality data products that are suitable for immediate use." SCARF stands for Satellite Constellation Application and Research Facility.

About the satellites

The three SWARM satellites together cost about 220 million euros, each weighs 500 kg. Inside the carrier rocket, a four-meter long measuring arm is folded on the back of the five meter long satellite body. This boom is folded out several hours after the deployment of the satellite, once the on-board operating system has been initiated. The reason for this is that the surface of the satellite is equipped with solar cells for the power supply. The magnetic field generated by the current, however, would interfere with the measurement, therefore, the magnetic field measuring instruments are mounted on the measuring arm.

At the tip of the boom, the particularly sensitive apparatus for measuring the magnetic field strength is installed, the sensors for determining the direction of the magnetic field are in its center. In the same position, three star sensors allow the satellite to determine and corrected its location.

To begin with, the three satellites fly parallel on a north-south path at about 88° inclination. Swarm-C is then slowly deflected by 30° per year and thus continues to fly at an increasing angle to the orbit of Swarm-A and -B.

Pictures in a printable resolution can be found here:
http://www.gfz-potsdam.de/medien-kommunikation/bildarchiv/gfz-satellitenmissionen/swarm/
Movies can be downloaded from:
ftp://ftp.gfz-potsdam.de/pub/incoming/PR/SWARM
Franz Ossing
Helmholtz Centre Potsdam
GFZ German Research Centre for Geosciences
Deutsches GeoForschungsZentrum
- Kommunikation und Medien, Leitung -
Telegrafenberg
14473 Potsdam / Germany
e-mail: ossing@gfz-potsdam.de
Tel. +49 (0)331-288 1040
Fax +49 (0)331-288 1044

Franz Ossing | GFZ Potsdam
Further information:
http://www.gfz-potsdam.de/

Further reports about: Earth's magnetic field GFZ Geosciences SCARF Swarm magnetic field solar cell

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>