Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Satellite survey reveals dramatic Arctic sea-ice thinning

Scientists have evaluated for the first time how much the thickness and volume of Arctic sea ice, not just the ice's surface area, have shrunk since 2004 across the Arctic Ocean basin.

Even where the sea ice cover persists despite climate change in the region, a vast portion of the remaining ice layer has become thinner than it used to be, the new study finds.

"Even in years when the overall extent of sea ice remains stable or grows slightly, the thickness and volume of the ice cover is continuing to decline, making the ice more vulnerable to continued shrinkage," says Ron Kwok, senior research scientist at NASA's Jet Propulsion laboratory in Pasadena, Calif., and leader of the study.

Kwok and colleagues at NASA and the University of Washington, in Seattle, report that Arctic sea ice thinned dramatically between the winters of 2004 and 2008, with thin seasonal ice replacing thick, older ice as the dominant type for the first time on record.

Using ICESat measurements, scientists found that overall Arctic sea ice thinned about 17.8 centimeters (7 inches) a year, for a total of 67 cm (2.2 feet) over four winters. The total area covered by the thicker, older, multi-year ice that survives one or more summers shrank by more than 40 percent.

The team's findings were published today, Tuesday 7 July, in the Journal of Geophysical Research- Oceans, a publication of the American Geophysical Union (AGU). The researchers used measurements from NASA's Ice, Cloud and land Elevation Satellite (ICESat) to generate the first basin-wide estimate of the thickness and volume of the Arctic Ocean's ice cover. The data covers the period from the fall of 2003 through the winter of 2008.

Kwok says the results offer a better understanding of the regional distribution of thick and thin ice in the Arctic, presenting a much more telling picture of what's going on in the Arctic than measurements of how much of the Arctic Ocean is covered in ice alone can.

"Ice volume allows us to calculate annual ice production and gives us an inventory of the freshwater and total ice mass stored in Arctic sea ice," he notes. "Our data will help scientists better understand how fast the volume of Arctic ice is decreasing and how soon we might see a nearly ice-free Arctic in the summer."

The Arctic ice cap grows each winter as the sun sets for several months and intense cold sets in. In the summer, driven by wind and ocean currents, some of that ice naturally flows out of the Arctic, while much of it melts in place. But not all of the Arctic ice thaws each summer: the thicker, older ice is more likely to survive. Seasonal sea ice usually reaches about 1.83 meters (6 feet) in thickness, while multi-year ice averages 2.74 m (9 ft).

In recent years, however, the amount of ice replaced in the winter has not been sufficient to replace summer ice losses. This leads to more open water in summer, which then absorbs more heat, warming the ocean and further melting the ice. Between 2004 and 2008, multi-year ice cover shrank 42 percent, or 1.54 million square kilometers (595,000 square miles) -- nearly the size of Alaska's land area.

During the study period, the relative contributions of the two ice types to the total volume of the Arctic's ice cover did a complete flip-flop. In 2003, 62 percent of the Arctic's total ice volume was stored in multi-year ice, with 38 percent stored in first-year seasonal ice. By 2008, 68 percent of the total ice volume was first-year ice, with 32 percent multi-year.

Study co-author and ICESat Project Scientist Jay Zwally of NASA's Goddard Space Flight Center, Greenbelt, Md., says ICESat makes it possible to monitor ice thickness and volume changes over the entire Arctic Ocean for the first time.

"One of the main things that has been missing from information about what is happening with sea ice is comprehensive data about ice thickness," says Zwally. "U.S. Navy submarines provide a long-term, high-resolution record of ice thickness over only parts of the Arctic. The submarine data agree with the ICESat measurements, giving us great confidence in satellites as a way of monitoring thickness across the whole Arctic Basin."

The authors attribute the changes in the overall thickness and volume of Arctic Ocean sea ice to the recent warming and anomalies in patterns of sea ice circulation. "The near-zero replenishment of the multi-year ice cover, combined with unusual exports of ice out of the Arctic after the summers of

2005 and 2007, have both played significant roles in the loss of Arctic sea ice volume over the ICESat record," says Kwok.

Ronald Kwok, Glenn F. Cunningham: Jet Propulsion Laboratory, California Institute of Technology,

Pasadena, California, USA

Mark Wensnahan, Ignatius Rigor: Polar Science Center, Applied Physics Laboratory, University of

Washington, Seattle, Washington, USA

H. Jay Zwally: Cryospheric Sciences Branch, NASA Goddard Space Flight Center, Greenbelt,

Maryland, USA.

Donghui Yi: SGT, Inc., NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.

Kwok, R., G. F. Cunningham, M. Wensnahan, I. Rigor, H. J. Zwally, and D. Yi (2009), Thinning and
volume loss of the Arctic Ocean sea ice cover: 2003-2008, J. Geophys. Res., 114, C07005,


Contact information for author:
Ron Kwok: +1 (303) 497 1334,

Peter Weiss | American Geophysical Union
Further information:

More articles from Earth Sciences:

nachricht Gas hydrate research: Advanced knowledge and new technologies
23.03.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht New technologies and computing power to help strengthen population data
22.03.2018 | University of Southampton

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>