Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite survey reveals dramatic Arctic sea-ice thinning

08.07.2009
Scientists have evaluated for the first time how much the thickness and volume of Arctic sea ice, not just the ice's surface area, have shrunk since 2004 across the Arctic Ocean basin.

Even where the sea ice cover persists despite climate change in the region, a vast portion of the remaining ice layer has become thinner than it used to be, the new study finds.

"Even in years when the overall extent of sea ice remains stable or grows slightly, the thickness and volume of the ice cover is continuing to decline, making the ice more vulnerable to continued shrinkage," says Ron Kwok, senior research scientist at NASA's Jet Propulsion laboratory in Pasadena, Calif., and leader of the study.

Kwok and colleagues at NASA and the University of Washington, in Seattle, report that Arctic sea ice thinned dramatically between the winters of 2004 and 2008, with thin seasonal ice replacing thick, older ice as the dominant type for the first time on record.

Using ICESat measurements, scientists found that overall Arctic sea ice thinned about 17.8 centimeters (7 inches) a year, for a total of 67 cm (2.2 feet) over four winters. The total area covered by the thicker, older, multi-year ice that survives one or more summers shrank by more than 40 percent.

The team's findings were published today, Tuesday 7 July, in the Journal of Geophysical Research- Oceans, a publication of the American Geophysical Union (AGU). The researchers used measurements from NASA's Ice, Cloud and land Elevation Satellite (ICESat) to generate the first basin-wide estimate of the thickness and volume of the Arctic Ocean's ice cover. The data covers the period from the fall of 2003 through the winter of 2008.

Kwok says the results offer a better understanding of the regional distribution of thick and thin ice in the Arctic, presenting a much more telling picture of what's going on in the Arctic than measurements of how much of the Arctic Ocean is covered in ice alone can.

"Ice volume allows us to calculate annual ice production and gives us an inventory of the freshwater and total ice mass stored in Arctic sea ice," he notes. "Our data will help scientists better understand how fast the volume of Arctic ice is decreasing and how soon we might see a nearly ice-free Arctic in the summer."

The Arctic ice cap grows each winter as the sun sets for several months and intense cold sets in. In the summer, driven by wind and ocean currents, some of that ice naturally flows out of the Arctic, while much of it melts in place. But not all of the Arctic ice thaws each summer: the thicker, older ice is more likely to survive. Seasonal sea ice usually reaches about 1.83 meters (6 feet) in thickness, while multi-year ice averages 2.74 m (9 ft).

In recent years, however, the amount of ice replaced in the winter has not been sufficient to replace summer ice losses. This leads to more open water in summer, which then absorbs more heat, warming the ocean and further melting the ice. Between 2004 and 2008, multi-year ice cover shrank 42 percent, or 1.54 million square kilometers (595,000 square miles) -- nearly the size of Alaska's land area.

During the study period, the relative contributions of the two ice types to the total volume of the Arctic's ice cover did a complete flip-flop. In 2003, 62 percent of the Arctic's total ice volume was stored in multi-year ice, with 38 percent stored in first-year seasonal ice. By 2008, 68 percent of the total ice volume was first-year ice, with 32 percent multi-year.

Study co-author and ICESat Project Scientist Jay Zwally of NASA's Goddard Space Flight Center, Greenbelt, Md., says ICESat makes it possible to monitor ice thickness and volume changes over the entire Arctic Ocean for the first time.

"One of the main things that has been missing from information about what is happening with sea ice is comprehensive data about ice thickness," says Zwally. "U.S. Navy submarines provide a long-term, high-resolution record of ice thickness over only parts of the Arctic. The submarine data agree with the ICESat measurements, giving us great confidence in satellites as a way of monitoring thickness across the whole Arctic Basin."

The authors attribute the changes in the overall thickness and volume of Arctic Ocean sea ice to the recent warming and anomalies in patterns of sea ice circulation. "The near-zero replenishment of the multi-year ice cover, combined with unusual exports of ice out of the Arctic after the summers of

2005 and 2007, have both played significant roles in the loss of Arctic sea ice volume over the ICESat record," says Kwok.

Authors:
Ronald Kwok, Glenn F. Cunningham: Jet Propulsion Laboratory, California Institute of Technology,

Pasadena, California, USA

Mark Wensnahan, Ignatius Rigor: Polar Science Center, Applied Physics Laboratory, University of

Washington, Seattle, Washington, USA

H. Jay Zwally: Cryospheric Sciences Branch, NASA Goddard Space Flight Center, Greenbelt,

Maryland, USA.

Donghui Yi: SGT, Inc., NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.

Citation:
Kwok, R., G. F. Cunningham, M. Wensnahan, I. Rigor, H. J. Zwally, and D. Yi (2009), Thinning and
volume loss of the Arctic Ocean sea ice cover: 2003-2008, J. Geophys. Res., 114, C07005,

doi:10.1029/2009JC005312

Contact information for author:
Ron Kwok: +1 (303) 497 1334, ronald.kwok@jpl.nasa.gov

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>