Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New satellite shows precise extent of the Arctic sea ice loss

Current measurements of the ESA ice thickness satellite CryoSat-2 have shown that the total mass of the Arctic sea ice was 36 per cent smaller last autumn than during the same period in the years 2003 to 2008.
Five years ago the autumn ice volumes averaged 11900 km3. But in the second quarter of 2012 they had declined to 7600 km3. This conclusion is reached by an international research team after comparing the CryoSat data of the past two years with measurements of a former NASA satellite and with the results of sea ice investigations of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research.

The study is published in the online issue of the scientific journal Geophysical Research Letters and for the first time shows how precisely scientists can observe the development of the Arctic sea ice using CryoSat-2.

When the Arctic sea ice melted so far in the late summer of last year that a new negative record was set up, sea ice physicist Stefan Hendricks could not have been closer to the course of events – in the Central Arctic. He and colleagues set out with helicopters from the research vessel POLARSTERN to survey the thickness of the remaining ice with a sea ice sensor; and this over an area of more than 3500 kilometres. Stefan Hendricks and colleagues use such datasets to check the measurement method and the measurement results of the CryoSat-2 ice satellite which the ESA (European Space Agency) launched into space on 8 April 2010.
The satellite has a radar altimeter which measures the height of the ice surface above the sea beneath. CryoSat-2 circles the Earth on an orbit which brings it closer to the North Pole than any of its predecessors. Its 1000 metre wide radar beam travels almost once over the entire Arctic within one month, collects high resolution data and, unlike its predecessor ICESat, also penetrates cloud cover. This is exciting technology which is helping scientists to learn more: “We now know that the CryoSat measurement method functions well. With the assistance of the satellite we have been able for the first time to prepare a virtually complete ice thickness map of the Arctic”, says sea ice physicist and co-author Stefan Hendricks from the Alfred Wegener Institute, Helmholtz Association for Polar and Marine Research (AWI). AWI sea ice experts have been measuring the thickness of the sea ice since 2003 in an ESA project.

The CryoSat data from the past two years prove that the ice cover in the Arctic was some 36 per cent smaller in the autumn of 2012 and around 9 per cent smaller in the winter than in the same two periods in the years from 2003 to 2008. Whilst the autumn volume of the ice averaged 11900 km3 up to five years ago, it shrank in the fourth quarter of 2012 to 7600 km3 – representing a decrease of 4300 km3. By contrast, the winter volume dropped from 16300 km3 (2003-2008) to 14800 km3 (2010-2012), a loss totalling 1500 km3.
The scientists primarily attribute these losses to the decline in the three to four metre thick, multiyear ice. “CryoSat data prove that this thick sea ice in a region to the north of Greenland, for example, at the Canadian Arctic Archipelago and also to the north east of Spitsbergen has disappeared”, says co-author Dr. Katharine Giles from University College London.

However, these new findings and the reliability of the CryoSat data are just the first step for the sea ice physicist Stefan Hendricks. “Measuring the sea ice via satellite has the great advantage that we are no longer dependent on the seasons and can also capture data in the winter. It was impossible to do this from an aircraft due to the darkness of Arctic winter”, explains Stefan Hendricks.

EM-Bird for ice thickness measurements in operation

Photo: Stefan Hendricks, Alfred-Wegener-Institut

A constant measurement of the sea ice is urgently necessary, however. “We have been working towards this goal for years because only once we know how thick the winter ice in the entire Arctic is, can more accurate short term predictions about the development of the ice cover in the subsequent summer be made”, says Stefan Hendricks.

His personal goal is to soon be in a position to publish an AWI Arctic map with the current sea ice thickness every month. Stefan Hendricks: “Every scientist working on this subject will then be able to use this data simply and easily.”

Notes for Editors:

The study appeared in the online issue of Geophysical Research Letters under the following title:
Seymour W. Laxon, Katharine A. Giles, Andy L. Ridout, Duncan J. Wingham, Rosemary Willatt, Robert Cullen, Ron Kwok, Axel Schweiger, Jinlun Zhang, Christian Haas, Stefan Hendricks, Richard Krishfield, Nathan Kurtz, Sinead Farrell, Malcolm Davidson (2013): CryoSat-2 estimates of Arctic sea ice thickness and volume, Geophysical Research Letters, online publication on 28 January 2013.

Link to the website of the German CryoSat project office:

Printable photos of the sea-ice measurement campaign of the Alfred Wegener Institute used to check the CryoSat-2 measurements may be seen in the online edition of this press release at

Your contact partners at the Alfred Wegener Institute are Stefan Hendricks (Tel: +49 471 4831-1874, e-mail: Stefan.Hendricks(at) and Sina Löschke in the Communications Department (Tel: +49 471 4831-2008, e-mail: Sina.Loeschke(at)

The Alfred Wegener Institute conducts research in the Arctic and Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research ice breaker Polarstern and stations in the Arctic and Antarctic to the international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>