Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite Sandwich Technique Improves Analysis of Geographical Data

09.04.2013
UC student researcher develops method to combine thermal data from separate satellite systems to create large, detailed maps of regional temperature fluctuation.

Combining parallel data from separate satellites can be like trying to make a peanut butter and jelly sandwich.

For the sandwich, you want rich and sweet flavors, blended into a smooth, creamy texture – and you want it all in one convenient package. That’s similar to how you want the satellite data, and Bo Yang, a University of Cincinnati graduate student in geography, has a formula for crafting a deeply informative and easily utilized satellite sandwich.

He’ll present his research, “Spatiotemporal Cokriging Images Fusion of Multi-Sensor Land Surface Temperature over Thaw Lakes on North Alaska,” at the Association of American Geographers annual meeting to be held April 9-13 in Los Angeles. The interdisciplinary forum is attended by more than 7,000 scientists from around the world and features an array of geography-related presentations, workshops and field trips.

For his master’s thesis, Yang studied thermal data from two different types of polar-orbiting satellite systems. One system frequently records large images of a region on Earth but in little detail. Another system records small images less frequently but in much greater detail. Analyzing two massive sets of parallel data and finding a way to make them overlap can be complicated and time-consuming. Yang is developing a method to simplify the process.

“In an easy-to-understand way, I am trying to derive both very high-definition and high-frequency revisiting imagery from two satellite-carried sensors,” Yang says. “I use the spatial statistics technique known as co-kriging to fuse multi-sensor land surface temperature images.”

Yang uses an algorithm he devised to fill the spatiotemporal gaps between the two data sets. The result is an intricately detailed map covering a large surface area that allows geographers to quickly derive daily – even hourly – surface temperature and emissivity information. These environmental parameters are important to agriculture and water resource management and can be used to detect the onset and severity of drought.

Yang used thaw lakes in the Arctic Coastal Plain of Alaska as his study area. These lakes are a critical component to Arctic ecology and one that is considered vulnerable to the effects of climate warming. Yang’s work is connected to a larger project under way in the region, the Circumarctic Lakes Observation Network. The National Science Foundation-funded effort aims to gather long-term, spatially extensive data to evaluate the effect of climate change on the region. UC faculty involved in the project include professors Kenneth Hinkel, Richard Beck, Wendy Eisner, Changjoo Kim, Hongxing Liu and Amy Townsend-Small, all of the McMicken College of Arts & Sciences.

Additional contributors to Yang’s research paper were UC professors Hongxing Liu and Emily Kang, and UC doctoral student Qiusheng Wu.

Funding for Yang’s research was provided by the National Science Foundation and NASA.

In 2012, UC was named among the nation’s top "green" schools by The Princeton Review due to its strong commitment to sustainability in academic offerings, campus infrastructure, activities and career preparation. It was the third year in a row that UC earned a spot on the prestigious list.

Tom Robinette | EurekAlert!
Further information:
http://www.uc.edu

More articles from Earth Sciences:

nachricht Better model of water under extreme conditions could aid understanding of Earth's mantle
21.06.2018 | University of Chicago

nachricht The Janus head of the South Asian monsoon
21.06.2018 | Max-Planck-Institut für Chemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>