Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite Sandwich Technique Improves Analysis of Geographical Data

09.04.2013
UC student researcher develops method to combine thermal data from separate satellite systems to create large, detailed maps of regional temperature fluctuation.

Combining parallel data from separate satellites can be like trying to make a peanut butter and jelly sandwich.

For the sandwich, you want rich and sweet flavors, blended into a smooth, creamy texture – and you want it all in one convenient package. That’s similar to how you want the satellite data, and Bo Yang, a University of Cincinnati graduate student in geography, has a formula for crafting a deeply informative and easily utilized satellite sandwich.

He’ll present his research, “Spatiotemporal Cokriging Images Fusion of Multi-Sensor Land Surface Temperature over Thaw Lakes on North Alaska,” at the Association of American Geographers annual meeting to be held April 9-13 in Los Angeles. The interdisciplinary forum is attended by more than 7,000 scientists from around the world and features an array of geography-related presentations, workshops and field trips.

For his master’s thesis, Yang studied thermal data from two different types of polar-orbiting satellite systems. One system frequently records large images of a region on Earth but in little detail. Another system records small images less frequently but in much greater detail. Analyzing two massive sets of parallel data and finding a way to make them overlap can be complicated and time-consuming. Yang is developing a method to simplify the process.

“In an easy-to-understand way, I am trying to derive both very high-definition and high-frequency revisiting imagery from two satellite-carried sensors,” Yang says. “I use the spatial statistics technique known as co-kriging to fuse multi-sensor land surface temperature images.”

Yang uses an algorithm he devised to fill the spatiotemporal gaps between the two data sets. The result is an intricately detailed map covering a large surface area that allows geographers to quickly derive daily – even hourly – surface temperature and emissivity information. These environmental parameters are important to agriculture and water resource management and can be used to detect the onset and severity of drought.

Yang used thaw lakes in the Arctic Coastal Plain of Alaska as his study area. These lakes are a critical component to Arctic ecology and one that is considered vulnerable to the effects of climate warming. Yang’s work is connected to a larger project under way in the region, the Circumarctic Lakes Observation Network. The National Science Foundation-funded effort aims to gather long-term, spatially extensive data to evaluate the effect of climate change on the region. UC faculty involved in the project include professors Kenneth Hinkel, Richard Beck, Wendy Eisner, Changjoo Kim, Hongxing Liu and Amy Townsend-Small, all of the McMicken College of Arts & Sciences.

Additional contributors to Yang’s research paper were UC professors Hongxing Liu and Emily Kang, and UC doctoral student Qiusheng Wu.

Funding for Yang’s research was provided by the National Science Foundation and NASA.

In 2012, UC was named among the nation’s top "green" schools by The Princeton Review due to its strong commitment to sustainability in academic offerings, campus infrastructure, activities and career preparation. It was the third year in a row that UC earned a spot on the prestigious list.

Tom Robinette | EurekAlert!
Further information:
http://www.uc.edu

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>