Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First satellite measurement of water volume in Amazon floodplain

06.08.2010
For the first time, scientists have been able to measure the amount of water that rises and falls annually in the Amazon River floodplain.

The result -- 285 billion metric tons, or 285 cubic kilometers of water by volume -- sounds like a lot. That amount is over half the volume of Lake Erie, which is the world’s 15th largest lake.

But it accounts for only 5 percent of the water flowing through the Amazon River every year, and it is a much smaller amount than researchers were expecting to find in the largest drainage basin in the world.

Doug Alsdorf, associate professor of earth sciences at Ohio State University, and his colleagues report their study online in the journal Remote Sensing of Environment, in a paper to appear in a future print edition.

Until now, researchers could only estimate the amount of water in the Amazon floodplain using a few sporadic field studies and crude assumptions about water flow. In fact, water volumes on any floodplain are poorly known, if at all. Yet this information is critical to predicting the floods and droughts that could accompany global climate change, explained Alsdorf.

Much of Earth’s available fresh water resides in remote rivers, lakes and wetlands, and also underground.

“Nobody knows exactly how much water there is on the planet,” he said. “We need to understand how our water supply will change as the climate changes, and the first step is getting a handle on how much water we actually have.”

Alsdorf and his team have made it their mission to find ways to measure water from space.

“Satellite observations are the only reliable option for places like the Amazon and especially the Congo Basin, where in-person measurements are near-impossible. Just getting there is a serious challenge,” he said.

For this study, the researchers were interested only in the amount of water that flowed into and out of the floodplain -- that is, the amount of water that spilled onto land when the Amazon River overflowed its banks during the rainy season.

Alsdorf and his team used four satellites -- three NASA satellites and one from the Japan Aerospace Exploration Agency -- to get the first direct measure of water in the floodplain.

They combined data from the Gravity Recovery and Climate Experiment, the Global Precipitation Climatology Project, the Shuttle Radar Topography Mission, and the Japanese Earth Resources Satellite. They focused on measuring water level changes during the wet and dry seasons between 2003 and 2006.

Taken together, these satellites gave a picture of how the Amazon landscape changed as highland rains surged through the river’s many tributaries and the resulting overflow spilled into the lowland jungle. After the water receded, they calculated the change in volume along the floodplain.

These calculations haven’t been made before, in part due to the immense difficulty of combining different kinds of data in a reliable way. The researchers had to meld gravity readings -- a measure of the flood water’s mass -- with radar and optical measurements of the water level and extent of the floodplain.

The measurements added up to an average of 285 cubic kilometers (285 billion metric tons) of water stored and emptied from the floodplain in a year.

At the height of the rainy season, water flowed into various locations on the Amazon floodplain at a rate of 5,500 cubic meters (5,500 metric tons) per second, and during the dry season, it drained away into the Amazon River -- and, ultimately, into the Atlantic Ocean – at a rate of 7,500 cubic meters (7,500 metric tons) per second.

The floodplain total, however large, represents only 5 percent of the amount that scientists believe is emptying from the Amazon River into the ocean every year.

To Alsdorf, the finding begs the question of exactly how much water is flowing through the Amazon system, and it underscores the many unknowns that scientists must confront as they work to understand climate change.

The Amazon, however grand in size, is just one river basin among countless basins around the planet -- each vital to the soil quality and water quality of its surroundings, he said.

Future measurements should be easier with the Surface Water and Ocean Topography (SWOT) mission, which aims to take stock of all the world’s water. Alsdorf co-leads the science team for the SWOT satellite, which NASA has set to launch in 2020.

Contact: Doug Alsdorf, (614) 247-6908; Alsdorf.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | EurekAlert!
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments
22.01.2018 | Duke University

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>