Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First satellite measurement of water volume in Amazon floodplain

06.08.2010
For the first time, scientists have been able to measure the amount of water that rises and falls annually in the Amazon River floodplain.

The result -- 285 billion metric tons, or 285 cubic kilometers of water by volume -- sounds like a lot. That amount is over half the volume of Lake Erie, which is the world’s 15th largest lake.

But it accounts for only 5 percent of the water flowing through the Amazon River every year, and it is a much smaller amount than researchers were expecting to find in the largest drainage basin in the world.

Doug Alsdorf, associate professor of earth sciences at Ohio State University, and his colleagues report their study online in the journal Remote Sensing of Environment, in a paper to appear in a future print edition.

Until now, researchers could only estimate the amount of water in the Amazon floodplain using a few sporadic field studies and crude assumptions about water flow. In fact, water volumes on any floodplain are poorly known, if at all. Yet this information is critical to predicting the floods and droughts that could accompany global climate change, explained Alsdorf.

Much of Earth’s available fresh water resides in remote rivers, lakes and wetlands, and also underground.

“Nobody knows exactly how much water there is on the planet,” he said. “We need to understand how our water supply will change as the climate changes, and the first step is getting a handle on how much water we actually have.”

Alsdorf and his team have made it their mission to find ways to measure water from space.

“Satellite observations are the only reliable option for places like the Amazon and especially the Congo Basin, where in-person measurements are near-impossible. Just getting there is a serious challenge,” he said.

For this study, the researchers were interested only in the amount of water that flowed into and out of the floodplain -- that is, the amount of water that spilled onto land when the Amazon River overflowed its banks during the rainy season.

Alsdorf and his team used four satellites -- three NASA satellites and one from the Japan Aerospace Exploration Agency -- to get the first direct measure of water in the floodplain.

They combined data from the Gravity Recovery and Climate Experiment, the Global Precipitation Climatology Project, the Shuttle Radar Topography Mission, and the Japanese Earth Resources Satellite. They focused on measuring water level changes during the wet and dry seasons between 2003 and 2006.

Taken together, these satellites gave a picture of how the Amazon landscape changed as highland rains surged through the river’s many tributaries and the resulting overflow spilled into the lowland jungle. After the water receded, they calculated the change in volume along the floodplain.

These calculations haven’t been made before, in part due to the immense difficulty of combining different kinds of data in a reliable way. The researchers had to meld gravity readings -- a measure of the flood water’s mass -- with radar and optical measurements of the water level and extent of the floodplain.

The measurements added up to an average of 285 cubic kilometers (285 billion metric tons) of water stored and emptied from the floodplain in a year.

At the height of the rainy season, water flowed into various locations on the Amazon floodplain at a rate of 5,500 cubic meters (5,500 metric tons) per second, and during the dry season, it drained away into the Amazon River -- and, ultimately, into the Atlantic Ocean – at a rate of 7,500 cubic meters (7,500 metric tons) per second.

The floodplain total, however large, represents only 5 percent of the amount that scientists believe is emptying from the Amazon River into the ocean every year.

To Alsdorf, the finding begs the question of exactly how much water is flowing through the Amazon system, and it underscores the many unknowns that scientists must confront as they work to understand climate change.

The Amazon, however grand in size, is just one river basin among countless basins around the planet -- each vital to the soil quality and water quality of its surroundings, he said.

Future measurements should be easier with the Surface Water and Ocean Topography (SWOT) mission, which aims to take stock of all the world’s water. Alsdorf co-leads the science team for the SWOT satellite, which NASA has set to launch in 2020.

Contact: Doug Alsdorf, (614) 247-6908; Alsdorf.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | EurekAlert!
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

nachricht Root exudates affect soil stability, water repellency
18.04.2018 | American Society of Agronomy

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>