Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First satellite measurement of water volume in Amazon floodplain

06.08.2010
For the first time, scientists have been able to measure the amount of water that rises and falls annually in the Amazon River floodplain.

The result -- 285 billion metric tons, or 285 cubic kilometers of water by volume -- sounds like a lot. That amount is over half the volume of Lake Erie, which is the world’s 15th largest lake.

But it accounts for only 5 percent of the water flowing through the Amazon River every year, and it is a much smaller amount than researchers were expecting to find in the largest drainage basin in the world.

Doug Alsdorf, associate professor of earth sciences at Ohio State University, and his colleagues report their study online in the journal Remote Sensing of Environment, in a paper to appear in a future print edition.

Until now, researchers could only estimate the amount of water in the Amazon floodplain using a few sporadic field studies and crude assumptions about water flow. In fact, water volumes on any floodplain are poorly known, if at all. Yet this information is critical to predicting the floods and droughts that could accompany global climate change, explained Alsdorf.

Much of Earth’s available fresh water resides in remote rivers, lakes and wetlands, and also underground.

“Nobody knows exactly how much water there is on the planet,” he said. “We need to understand how our water supply will change as the climate changes, and the first step is getting a handle on how much water we actually have.”

Alsdorf and his team have made it their mission to find ways to measure water from space.

“Satellite observations are the only reliable option for places like the Amazon and especially the Congo Basin, where in-person measurements are near-impossible. Just getting there is a serious challenge,” he said.

For this study, the researchers were interested only in the amount of water that flowed into and out of the floodplain -- that is, the amount of water that spilled onto land when the Amazon River overflowed its banks during the rainy season.

Alsdorf and his team used four satellites -- three NASA satellites and one from the Japan Aerospace Exploration Agency -- to get the first direct measure of water in the floodplain.

They combined data from the Gravity Recovery and Climate Experiment, the Global Precipitation Climatology Project, the Shuttle Radar Topography Mission, and the Japanese Earth Resources Satellite. They focused on measuring water level changes during the wet and dry seasons between 2003 and 2006.

Taken together, these satellites gave a picture of how the Amazon landscape changed as highland rains surged through the river’s many tributaries and the resulting overflow spilled into the lowland jungle. After the water receded, they calculated the change in volume along the floodplain.

These calculations haven’t been made before, in part due to the immense difficulty of combining different kinds of data in a reliable way. The researchers had to meld gravity readings -- a measure of the flood water’s mass -- with radar and optical measurements of the water level and extent of the floodplain.

The measurements added up to an average of 285 cubic kilometers (285 billion metric tons) of water stored and emptied from the floodplain in a year.

At the height of the rainy season, water flowed into various locations on the Amazon floodplain at a rate of 5,500 cubic meters (5,500 metric tons) per second, and during the dry season, it drained away into the Amazon River -- and, ultimately, into the Atlantic Ocean – at a rate of 7,500 cubic meters (7,500 metric tons) per second.

The floodplain total, however large, represents only 5 percent of the amount that scientists believe is emptying from the Amazon River into the ocean every year.

To Alsdorf, the finding begs the question of exactly how much water is flowing through the Amazon system, and it underscores the many unknowns that scientists must confront as they work to understand climate change.

The Amazon, however grand in size, is just one river basin among countless basins around the planet -- each vital to the soil quality and water quality of its surroundings, he said.

Future measurements should be easier with the Surface Water and Ocean Topography (SWOT) mission, which aims to take stock of all the world’s water. Alsdorf co-leads the science team for the SWOT satellite, which NASA has set to launch in 2020.

Contact: Doug Alsdorf, (614) 247-6908; Alsdorf.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | EurekAlert!
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>