Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite Images Show Breakup of Two of Greenland's Largest Glaciers

25.08.2008
Researchers monitoring daily satellite images here of Greenland’s glaciers have discovered break-ups at two of the largest glaciers in the last month.

They expect that part of the Northern hemisphere’s longest floating glacier will continue to disintegrate within the next year.

A massive 11-square-mile (29-square-kilometer) piece of the Petermann Glacier in northern Greenland broke away between July 10th and by July 24th. The loss to that glacier is equal to half the size of Manhattan Island. The last major ice loss to Petermann occurred when the glacier lost 33 square miles (86 square kilometers) of floating ice between 2000 and 2001.

Petermann has a floating section of ice 10 miles (16 kilometers) wide and 50 miles (80.4 kilometers) long which covers 500 square miles (1,295 square kilometers).

What worries Jason Box, an associate professor of geography at Ohio State, and his colleagues, graduate students Russell Benson and David Decker, even more about the latest images is what appears to be a massive crack further back from the margin of the Petermann Glacier.

That crack may signal an imminent and much larger breakup.

“If the Petermann glacier breaks up back to the upstream rift, the loss would be as much as 60 square miles (160 square kilometers),” Box said, representing a loss of one-third of the massive ice field.

Meanwhile, the margin of the massive Jakobshavn glacier has retreated inland further than it has at any time in the past 150 years it has been observed. Researchers believe that the glacier has not retreated to where it is now in at least the last 4,000 to 6,000 years.

The Northern branch of the Jakobshavn broke up in the past several weeks and the glacier has lost at least three square miles (10 square kilometers) since the end of the last melt season.

The Jakobshavn Glacier dominates the approximately 130 glaciers flowing out of Greenland’s inland into the sea. It alone is responsible for producing at least one-tenth of the icebergs calving off into the sea from the entire island of Greenland, making it the island’s most productive glacier.

Between 2001 and 2005, a massive breakup of the Jakobshavn glacier erased 36 square miles (94 square kilometers) from the ice field and raised the awareness of worldwide of glacial response to global climate change.

The researchers are using images updated daily from National Aeronautics and Space Administration satellites and from time-lapse photography from cameras monitoring the margin of these and other Greenland glaciers. Additional support for this project came from NASA.

Further details and image products can be found at: http://bprc.osu.edu/MODIS/

Contact: Jason Box, (614) 247- 6899; box.11@osu.edu.

Earle Holland | Newswise Science News
Further information:
http://www.osu.edu

Further reports about: Glacier Greenland Northern hemisphere Petermann Glacier ice field iceberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>