Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Santorini: The Ground is Moving Again in Paradise

16.03.2012
Do a Google image search for “Greece.” Before you find pictures of the Parthenon or Acropolis, you’ll see several beautiful photos of Santorini, the picturesque island in the Aegean Sea. The British Broadcasting Company named it the world’s best island in 2011. Santorini is a tourist magnet, famous for its breathtaking, cliff side views and sunsets.

It’s also a volcanic island that has been relatively calm since its last eruption in 1950. Until now. The Santorini caldera is awake again and rapidly deforming at levels never seen before. Georgia Tech Associate Professor Andrew Newman has studied Santorini since setting up more than 20 GPS stations on the island in 2006.

“After decades of little activity, a series of earthquakes and deformation began within the Santorini caldera in January of 2011,” said Newman, whose research is published by Geophysical Research Letters. “Since then, our instruments on the northern part of the island have moved laterally between five and nine centimeters. The volcano’s magma chamber is filling, and we are keeping a close eye on its activity.”

Newman, a geophysicist in the School of Earth and Atmospheric Sciences, cannot be certain whether an eruption is imminent since observations of such activity on these types of volcanoes are limited. In fact, similar calderas around the globe have shown comparable activity without erupting. However, Newman says the chamber has expanded by 14 million cubic meters since last January. That means enough magma has been pumped into the chamber to fill a sphere three football fields across.

Should Santorini erupt, Newman says it will likely be comparable to what the island has seen in the last 450 years.

“That could be dangerous,” notes Newman. “If the caldera erupts underwater, it could cause local tsunamis and affect boat traffic, including cruise ships, in the caldera. Earthquakes could damage homes and produce landslides along the cliffs.”

More than 50,000 tourists a day flock to Santorini in the summer months (from May to October). It’s common to see as many as five cruise ships floating above the volcano.

Santorini is the site of one of the largest volcanic events in human history. The Minoan eruption, which occurred around 1650 B.C., buried the major port city of Akrotiri with more than 20 meters of ash and created Santorini’s famous, present-day cliffs. Newman says such history will likely not repeat itself any time soon. Such an eruption comes along once every 100,000 years, and the current inflation in the magma chamber is less than 1 percent of the Minoan blast.

To see an animation of Newman's GPS stations and the angles of movement, click here: http://geophysics.eas.gatech.edu/people/anewman/research/papers/Newman_etal_GRL_2012ms01.gif

This project was supported in part by the National Science Foundation (NSF) (Award No. EAR-1153355). The content is solely the responsibility of the principal investigators and does not necessarily represent the official views of the NSF

Jason Maderer | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections

25.09.2017 | Life Sciences

NASA'S OSIRIS-REx spacecraft slingshots past Earth

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>