Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Sands of Time: What 30,000 Years of Sediment Can Teach US About the Changing Ocean

24.06.2013
It’s surprising what a large cylinder of ocean floor sediment can tell you about the Earth’s global climate and ocean history. At face value, it may only seem like a big cylinder of mud, but to a paleo-oceanographer it provides a much bigger picture.

A team of international scientists known as the NICOPP (Nitrogen Cycle in the Ocean, Past and Present) working group, led by Dalhousie oceanographer Markus Kienast and Eric Galbraith of McGill University, use these cylinders to measure isotopes of nitrogen on the seafloor that arise from nitrogen-rich phytoplankton sinking and collecting in the mud.

“Over thousands of years, this slow accumulation builds up a vertical record of past changes that can be sampled by taking a sediment core using a specialized ship,” says Dr. Kienast. “As you go down in the core, you go back in time.”

In a new paper, published last week in Nature Geoscience, the NICOPP working group presented the first global synopsis of available sedimentary nitrogen isotope records from throughout the world’s oceans, spanning the past 30,000 years.

“The results confirm the ocean is an effective self-regulator with respect to nitrogen, a major nutrient,” says Dr. Kienast, “but reaching equilibrium after a disturbance such as the last glacial-interglacial warming can take hundreds or thousands of years.”

That’s a concern, given the scale and speed of current anthropogenic changes. In recent years, human activity, rather than natural causes, has become the main factor in oceanic change around the world. Global warming, along with the heavy use of nitrogen-based fertilizers for agriculture, is pushing the natural ocean nitrogen cycle off balance.

“Despite its importance for all marine life, we don’t really have a good handle on how the global ocean will react to these changes,” said Dr. Galbraith. “With too little nitrogen, the ecosystem would starve. Too much, and the decay of sinking phytoplankton would use up the oxygen dissolved in ocean water, suffocating fish and other marine animals.”

This highlights the importance of research on the interplay between climate change and ocean biogeochemistry.

Previous studies on nitrogen isotopes in marine sediment records had shown signs of changes in denitrification at the end of the ice age, in some localized places. But the nitrogen isotope records are difficult to interpret from individual sites alone.

“Our research was driven by our need to provide quantitative constraints of climate change effects on the global ocean,” says Dr. Kienast.

After three years of research, the international team, composed of 35 ocean researchers, completed their goal of assembling a global network of sediment records to see the full picture clearly and compare the results with computer models of the ocean.

“This publication is not the end of it,” says Dr. Kienast. “We have a great group of enthusiastic scientists and we are looking to broaden our group and expand our research. Stay tuned.”

On his recent trip collecting sediment samples in the western tropical Pacific, Dr. Kienast was accompanied by Dalhousie MSc student Liz Kerrigan.

“If you like getting muddy, then you’ll love sediment work,” says Kerrigan. “Ultimately, this information from the sediment helps us reveal a little bit more about what’s happening in the ocean, both today and in the past”.

It is not a rare occasion for Dalhousie Oceanography graduate students to spend time at sea — it’s a key program requirement.

“A requirement that they are usually more than happy to fulfill,” says Dr. Kienast.

Regis Dudley, Communications, Faculty of Science, Dalhousie University, (902) 494-4105, regis.dudley@dal.ca

Regis Dudley | Newswise
Further information:
http://www.dal.ca

More articles from Earth Sciences:

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

nachricht Rutgers scientists help create world's largest coral gene database
24.05.2016 | Rutgers University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>