Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Sands of Time: What 30,000 Years of Sediment Can Teach US About the Changing Ocean

24.06.2013
It’s surprising what a large cylinder of ocean floor sediment can tell you about the Earth’s global climate and ocean history. At face value, it may only seem like a big cylinder of mud, but to a paleo-oceanographer it provides a much bigger picture.

A team of international scientists known as the NICOPP (Nitrogen Cycle in the Ocean, Past and Present) working group, led by Dalhousie oceanographer Markus Kienast and Eric Galbraith of McGill University, use these cylinders to measure isotopes of nitrogen on the seafloor that arise from nitrogen-rich phytoplankton sinking and collecting in the mud.

“Over thousands of years, this slow accumulation builds up a vertical record of past changes that can be sampled by taking a sediment core using a specialized ship,” says Dr. Kienast. “As you go down in the core, you go back in time.”

In a new paper, published last week in Nature Geoscience, the NICOPP working group presented the first global synopsis of available sedimentary nitrogen isotope records from throughout the world’s oceans, spanning the past 30,000 years.

“The results confirm the ocean is an effective self-regulator with respect to nitrogen, a major nutrient,” says Dr. Kienast, “but reaching equilibrium after a disturbance such as the last glacial-interglacial warming can take hundreds or thousands of years.”

That’s a concern, given the scale and speed of current anthropogenic changes. In recent years, human activity, rather than natural causes, has become the main factor in oceanic change around the world. Global warming, along with the heavy use of nitrogen-based fertilizers for agriculture, is pushing the natural ocean nitrogen cycle off balance.

“Despite its importance for all marine life, we don’t really have a good handle on how the global ocean will react to these changes,” said Dr. Galbraith. “With too little nitrogen, the ecosystem would starve. Too much, and the decay of sinking phytoplankton would use up the oxygen dissolved in ocean water, suffocating fish and other marine animals.”

This highlights the importance of research on the interplay between climate change and ocean biogeochemistry.

Previous studies on nitrogen isotopes in marine sediment records had shown signs of changes in denitrification at the end of the ice age, in some localized places. But the nitrogen isotope records are difficult to interpret from individual sites alone.

“Our research was driven by our need to provide quantitative constraints of climate change effects on the global ocean,” says Dr. Kienast.

After three years of research, the international team, composed of 35 ocean researchers, completed their goal of assembling a global network of sediment records to see the full picture clearly and compare the results with computer models of the ocean.

“This publication is not the end of it,” says Dr. Kienast. “We have a great group of enthusiastic scientists and we are looking to broaden our group and expand our research. Stay tuned.”

On his recent trip collecting sediment samples in the western tropical Pacific, Dr. Kienast was accompanied by Dalhousie MSc student Liz Kerrigan.

“If you like getting muddy, then you’ll love sediment work,” says Kerrigan. “Ultimately, this information from the sediment helps us reveal a little bit more about what’s happening in the ocean, both today and in the past”.

It is not a rare occasion for Dalhousie Oceanography graduate students to spend time at sea — it’s a key program requirement.

“A requirement that they are usually more than happy to fulfill,” says Dr. Kienast.

Regis Dudley, Communications, Faculty of Science, Dalhousie University, (902) 494-4105, regis.dudley@dal.ca

Regis Dudley | Newswise
Further information:
http://www.dal.ca

More articles from Earth Sciences:

nachricht Antarctic Ice Shelves Rapidly Thinning
30.03.2015 | University of California, San Diego

nachricht Climate change does not cause extreme winters
30.03.2015 | ETH Zurich

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

BLS Cargo orders 15 multisystem locomotives

30.03.2015 | Press release

Shark Tagged by NSU’s Guy Harvey Research Institute Is Apparently Enjoying Time in Warm, Tropical Waters

30.03.2015 | Life Sciences

Antarctic Ice Shelves Rapidly Thinning

30.03.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>