Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Sands of Time: What 30,000 Years of Sediment Can Teach US About the Changing Ocean

24.06.2013
It’s surprising what a large cylinder of ocean floor sediment can tell you about the Earth’s global climate and ocean history. At face value, it may only seem like a big cylinder of mud, but to a paleo-oceanographer it provides a much bigger picture.

A team of international scientists known as the NICOPP (Nitrogen Cycle in the Ocean, Past and Present) working group, led by Dalhousie oceanographer Markus Kienast and Eric Galbraith of McGill University, use these cylinders to measure isotopes of nitrogen on the seafloor that arise from nitrogen-rich phytoplankton sinking and collecting in the mud.

“Over thousands of years, this slow accumulation builds up a vertical record of past changes that can be sampled by taking a sediment core using a specialized ship,” says Dr. Kienast. “As you go down in the core, you go back in time.”

In a new paper, published last week in Nature Geoscience, the NICOPP working group presented the first global synopsis of available sedimentary nitrogen isotope records from throughout the world’s oceans, spanning the past 30,000 years.

“The results confirm the ocean is an effective self-regulator with respect to nitrogen, a major nutrient,” says Dr. Kienast, “but reaching equilibrium after a disturbance such as the last glacial-interglacial warming can take hundreds or thousands of years.”

That’s a concern, given the scale and speed of current anthropogenic changes. In recent years, human activity, rather than natural causes, has become the main factor in oceanic change around the world. Global warming, along with the heavy use of nitrogen-based fertilizers for agriculture, is pushing the natural ocean nitrogen cycle off balance.

“Despite its importance for all marine life, we don’t really have a good handle on how the global ocean will react to these changes,” said Dr. Galbraith. “With too little nitrogen, the ecosystem would starve. Too much, and the decay of sinking phytoplankton would use up the oxygen dissolved in ocean water, suffocating fish and other marine animals.”

This highlights the importance of research on the interplay between climate change and ocean biogeochemistry.

Previous studies on nitrogen isotopes in marine sediment records had shown signs of changes in denitrification at the end of the ice age, in some localized places. But the nitrogen isotope records are difficult to interpret from individual sites alone.

“Our research was driven by our need to provide quantitative constraints of climate change effects on the global ocean,” says Dr. Kienast.

After three years of research, the international team, composed of 35 ocean researchers, completed their goal of assembling a global network of sediment records to see the full picture clearly and compare the results with computer models of the ocean.

“This publication is not the end of it,” says Dr. Kienast. “We have a great group of enthusiastic scientists and we are looking to broaden our group and expand our research. Stay tuned.”

On his recent trip collecting sediment samples in the western tropical Pacific, Dr. Kienast was accompanied by Dalhousie MSc student Liz Kerrigan.

“If you like getting muddy, then you’ll love sediment work,” says Kerrigan. “Ultimately, this information from the sediment helps us reveal a little bit more about what’s happening in the ocean, both today and in the past”.

It is not a rare occasion for Dalhousie Oceanography graduate students to spend time at sea — it’s a key program requirement.

“A requirement that they are usually more than happy to fulfill,” says Dr. Kienast.

Regis Dudley, Communications, Faculty of Science, Dalhousie University, (902) 494-4105, regis.dudley@dal.ca

Regis Dudley | Newswise
Further information:
http://www.dal.ca

More articles from Earth Sciences:

nachricht Climate engineering may save coral reefs, study shows
26.05.2015 | University of Exeter

nachricht New Link Between Ocean Microbes and Atmosphere Uncovered
22.05.2015 | University of California, San Diego

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Analytical lamps monitor air pollution in cities

26.05.2015 | Ecology, The Environment and Conservation

DNA double helix does double duty in assembling arrays of nanoparticles

26.05.2015 | Life Sciences

Turn That Defect Upside Down

26.05.2015 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>