Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sand Dunes Reveal Unexpected Dryness During Heavy Monsoon

08.10.2009
The windswept deserts of northern China might seem an odd destination for studying the heavy monsoon rains that routinely drench the more tropical regions of Southeast Asia.

But the sandy dunefields that mark the desert margin between greener pastures to the south and the Gobi Desert to the north are a rich source of information about past climates in Asia, says University of Wisconsin-Madison geographer Joseph Mason. Wetter periods allow vegetation to take root on and stabilize sand dunes. During dry spells, plants die off and the dunes are more active, constantly shifting as sand is blown away and replenished.

Such patterns of dune activity provide a history of the area’s climate — if one can read them, Mason says. “When did those periods of stability or activity occur and from that, what can we infer about climate change?”

As reported in a new paper in the October issue of the journal Geology, Mason and colleagues mapped sand dune activity across northern China and found unexpectedly high levels of mobility and change 8,000 to 11,500 years ago, a time period generally thought to have a wetter climate. The result challenges existing ideas about the monsoon’s regional influence and could impact future climate predictions.

Today, the dunes are at the edge of the monsoon region and the scientists expected to find close correlation between precipitation in the dunefields and the strength of the monsoon.

What they found instead was rather surprising. “They turn out to be almost completely out of phase,” Mason says. “Where we find lots of active dunes turns out to be a time when the monsoon system is supposed to have been stronger in southern and central China.”

Part of the explanation may lie in local patterns of atmospheric circulation. At the peak of the summer monsoon, central China experiences both heavy summer rainfall and strong upward airflow. That upward flow tends to be balanced out by more downward air motion — which suppresses precipitation — in areas north and west of the monsoon core.

Regional climate modeling data from the UW-Madison Center for Climatic Research, led by co-author and UW-Madison professor of atmospheric and oceanic sciences Zhengyu Liu, shows that this pattern may have been strengthened between 8,000 and 11,500 years ago. The models also show high summer temperatures at that time, which would have increased evaporation and further reduced the moisture that supports dune-stabilizing plants.

This pattern of climate change had been described for areas distant from the monsoon, like Central Asia around the Caspian and Aral Seas and in northern Mongolia. However, Mason says, “It hasn’t really been recognized that this effect could be going on in northern China, which is where our study sites are. What it means is there’s much more of a contrast in climate change across a fairly short distance.”

The new findings relied on a technique called optically stimulated luminescence (OSL), which dates the last time the sand was exposed to sunlight. Radiocarbon dating methods are of limited use since sand typically contains little or no organic material. The OSL method identifies time periods when the sand was actively moving around, indicating little precipitation, and times when dunes were stable.

Mason’s previous work in the area suggests that moisture and precipitation are the most significant factors in determining the activity of the Chinese dunes. The new results mean that common assumptions about the effects of future climate changes — including the increased monsoon rainfall predicted by many climatologists — may be incorrect.

“If monsoon rainfall increases in southern China over the next century, the logical assumption would be that these dunes would become more stable as more precipitation also reaches the dune fields and increases vegetation cover,” Mason says. “That may not be true… The dunes can become active and the climate there can become drier even when the monsoon is getting stronger.”

Even if future rainfall in northern China isn’t reduced by changing air circulation patterns as it was in the past, rising temperatures will undoubtedly increase evaporation, he says, exacerbating the water shortages that already plague the area. An accompanying increase in sand dune activity would reduce available grazing land and worsen air quality.

“If it’s drier you have less vegetation and the dunes are active. There will almost certainly be more dust produced, which is a major environmental hazard. Some of the dust from northern China actually reaches Korea, Japan and even the western U.S.,” says Mason.

The paper is co-authored by colleagues in China, the Illinois State Geological Survey, and the University of Nebraska-Lincoln. Funding was provided by the National Science Foundation, the National Natural Science Foundation of China, the China National S&T Basic Work Program, and Nanjing University.

CONTACT: Joseph Mason, mason@geography.wisc.edu, 608-262-6316

Jill Sakai | Newswise Science News
Further information:
http://www.wisc.edu
http://www.news.wisc.edu/newsphotos/otindagDunefield09.html

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>