Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sand Dunes Reveal Unexpected Dryness During Heavy Monsoon

08.10.2009
The windswept deserts of northern China might seem an odd destination for studying the heavy monsoon rains that routinely drench the more tropical regions of Southeast Asia.

But the sandy dunefields that mark the desert margin between greener pastures to the south and the Gobi Desert to the north are a rich source of information about past climates in Asia, says University of Wisconsin-Madison geographer Joseph Mason. Wetter periods allow vegetation to take root on and stabilize sand dunes. During dry spells, plants die off and the dunes are more active, constantly shifting as sand is blown away and replenished.

Such patterns of dune activity provide a history of the area’s climate — if one can read them, Mason says. “When did those periods of stability or activity occur and from that, what can we infer about climate change?”

As reported in a new paper in the October issue of the journal Geology, Mason and colleagues mapped sand dune activity across northern China and found unexpectedly high levels of mobility and change 8,000 to 11,500 years ago, a time period generally thought to have a wetter climate. The result challenges existing ideas about the monsoon’s regional influence and could impact future climate predictions.

Today, the dunes are at the edge of the monsoon region and the scientists expected to find close correlation between precipitation in the dunefields and the strength of the monsoon.

What they found instead was rather surprising. “They turn out to be almost completely out of phase,” Mason says. “Where we find lots of active dunes turns out to be a time when the monsoon system is supposed to have been stronger in southern and central China.”

Part of the explanation may lie in local patterns of atmospheric circulation. At the peak of the summer monsoon, central China experiences both heavy summer rainfall and strong upward airflow. That upward flow tends to be balanced out by more downward air motion — which suppresses precipitation — in areas north and west of the monsoon core.

Regional climate modeling data from the UW-Madison Center for Climatic Research, led by co-author and UW-Madison professor of atmospheric and oceanic sciences Zhengyu Liu, shows that this pattern may have been strengthened between 8,000 and 11,500 years ago. The models also show high summer temperatures at that time, which would have increased evaporation and further reduced the moisture that supports dune-stabilizing plants.

This pattern of climate change had been described for areas distant from the monsoon, like Central Asia around the Caspian and Aral Seas and in northern Mongolia. However, Mason says, “It hasn’t really been recognized that this effect could be going on in northern China, which is where our study sites are. What it means is there’s much more of a contrast in climate change across a fairly short distance.”

The new findings relied on a technique called optically stimulated luminescence (OSL), which dates the last time the sand was exposed to sunlight. Radiocarbon dating methods are of limited use since sand typically contains little or no organic material. The OSL method identifies time periods when the sand was actively moving around, indicating little precipitation, and times when dunes were stable.

Mason’s previous work in the area suggests that moisture and precipitation are the most significant factors in determining the activity of the Chinese dunes. The new results mean that common assumptions about the effects of future climate changes — including the increased monsoon rainfall predicted by many climatologists — may be incorrect.

“If monsoon rainfall increases in southern China over the next century, the logical assumption would be that these dunes would become more stable as more precipitation also reaches the dune fields and increases vegetation cover,” Mason says. “That may not be true… The dunes can become active and the climate there can become drier even when the monsoon is getting stronger.”

Even if future rainfall in northern China isn’t reduced by changing air circulation patterns as it was in the past, rising temperatures will undoubtedly increase evaporation, he says, exacerbating the water shortages that already plague the area. An accompanying increase in sand dune activity would reduce available grazing land and worsen air quality.

“If it’s drier you have less vegetation and the dunes are active. There will almost certainly be more dust produced, which is a major environmental hazard. Some of the dust from northern China actually reaches Korea, Japan and even the western U.S.,” says Mason.

The paper is co-authored by colleagues in China, the Illinois State Geological Survey, and the University of Nebraska-Lincoln. Funding was provided by the National Science Foundation, the National Natural Science Foundation of China, the China National S&T Basic Work Program, and Nanjing University.

CONTACT: Joseph Mason, mason@geography.wisc.edu, 608-262-6316

Jill Sakai | Newswise Science News
Further information:
http://www.wisc.edu
http://www.news.wisc.edu/newsphotos/otindagDunefield09.html

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>