Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

San Andreas affected by 2004 Sumatran quake

02.10.2009
Study: Largest quakes can weaken fault zones worldwide

U.S. seismologists have found evidence that the massive 2004 earthquake that triggered killer tsunamis throughout the Indian Ocean weakened at least a portion of California's famed San Andreas Fault.

The results, which appear this week in the journal Nature, suggest that the Earth's largest earthquakes can weaken fault zones worldwide and may trigger periods of increased global seismic activity.

"An unusually high number of magnitude 8 earthquakes occurred worldwide in 2005 and 2006," said study co-author Fenglin Niu, associate professor of Earth science at Rice University. "There has been speculation that these were somehow triggered by the Sumatran-Andaman earthquake that occurred on Dec. 26, 2004, but this is the first direct evidence that the quake could change fault strength of a fault remotely."

Earthquakes are caused when a fault fails, either because of the buildup of stress or because of the weakening of the fault. The latter is more difficult to measure.

The magnitude 9 earthquake in 2004 occurred beneath the ocean west of Sumatra and was the second-largest quake ever measured by seismograph. The temblor spawned tsunamis as large as 100 feet that killed an estimated 230,000, mostly in Indonesia, Sri Lanka, India and Thailand.

In the new study, Niu and co-authors Taka'aki Taira and Paul Silver, both of the Carnegie Institution of Science in Washington, D.C., and Robert Nadeau of the University of California, Berkeley, examined more than 20 years of seismic records from Parkfield, Calif., which sits astride the San Andreas Fault.

The team zeroed in on a set of repeating microearthquakes that occurred near Parkfield over two decades. Each of these tiny quakes originated in almost exactly the same location. By closely comparing seismic readings from these quakes, the team was able to determine the "fault strength" -- the shear stress level required to cause the fault to slip -- at Parkfield between 1987 and 2008.

The team found fault strength changed markedly at three times during the 20-year period. The authors surmised that the 1992 Landers earthquake, a magnitude 7 quake north of Palm Springs, Calif. -- about 200 miles from Parkfield -- caused the first of these changes. The study found the Landers quake destabilized the fault near Parkfield, causing a series of magnitude 4 quakes and a notable "aseismic" event -- a movement of the fault that played out over several months -- in 1993.

The second change in fault strength occurred in conjunction with a magnitude 6 earthquake at Parkfield in September 2004. The team found another change at Parkfield later that year that could not be accounted for by the September quake alone. Eventually, they were able to narrow the onset of this third shift to a five-day window in late December during which the Sumatran quake occurred.

"The long-range influence of the 2004 Sumatran-Andaman earthquake on this patch of the San Andreas suggests that the quake may have affected other faults, bringing a significant fraction of them closer to failure," said Taira. "This hypothesis appears to be borne out by the unusually high number of large earthquakes that occurred in the three years after the Sumatran-Andaman quake."

The research was supported by the National Science Foundation, the Carnegie Institution of Washington, the University of California, Berkeley, and the U.S. Geological Survey.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>