Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salt Marsh Carbon May Play Role in Slowing Climate Warming

27.09.2012
A warming climate and rising seas will enable salt marshes to more rapidly capture and remove carbon dioxide from the atmosphere, possibly playing a role in slowing the rate of climate change, according to a new study led by a University of Virginia environmental scientist and published in the Sept. 27 issue of the journal Nature.
Carbon dioxide is the predominant so-called “greenhouse gas” that acts as sort of an atmospheric blanket, trapping the Earth’s heat. Over time, an abundance of carbon dioxide can change the global climate, according to generally accepted scientific theory. A warmer climate melts polar ice, causing sea levels to rise.

A large portion of the carbon dioxide in the atmosphere is produced by human activities, primarily the burning of fossil fuels to energize a rapidly growing world human population.

Fariss Samarrai

Aerial view of a salt marsh at Virginia's Eastern Shore.

“We predict that marshes will absorb some of that carbon dioxide, and if other coastal ecosystems – such as seagrasses and mangroves – respond similarly, there might be a little less warming,” said the study’s lead author, Matt Kirwan, a research assistant professor of environmental sciences in the College of Arts & Sciences.

Salt marshes, made up primarily of grasses, are important coastal ecosystems, helping to protect shorelines from storms and providing habitat for a diverse range of wildlife, from birds to mammals, shell- and fin-fishes and mollusks. They also build up coastal elevations by trapping sediment during floods, and produce new soil from roots and decaying organic matter.

“One of the cool things about salt marshes is that they are perhaps the best example of an ecosystem that actually depends on carbon accumulation to survive climate change: The accumulation of roots in the soil builds their elevation, keeping the plants above the water,” Kirwan said.

Salt marshes store enormous quantities of carbon, essential to plant productivity, by, in essence, breathing in the atmospheric carbon and then using it to grow, flourish and increase the height of the soil. Even as the grasses die, the carbon remains trapped in the sediment. The researchers’ model predicts that under faster sea-level rise rates, salt marshes could bury up to four times as much carbon as they do now.

“Our work indicates that the value of these ecosystems in capturing atmospheric carbon might become much more important in the future, as the climate warms,” Kirwan said.

But the study also shows that marshes can survive only moderate rates of sea level rise. If seas rise too quickly, the marshes could not increase their elevations at a rate rapid enough to stay above the rising water. And if marshes were to be overcome by fast-rising seas, they no longer could provide the carbon storage capacity that otherwise would help slow climate warming and the resulting rising water.

“At fast levels of sea level rise, no realistic amount of carbon accumulation will help them survive,” Kirwan noted.

Kirwan and his co-author, Simon Mudd, a geosciences researcher at the University of Edinburgh in Scotland, used computer models to predict salt marsh growth rates under different climate change and sea-level scenarios.

The United States Geological Survey’s Global Change Research Program supported the research.

Fariss Samarrai | Newswise Science News
Further information:
http://www.virginia.edu

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>