Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saharan and Asian Dust, Biological Particles End Global Journey in California

01.03.2013
UCSD, NOAA study is the first to show that dust and other aerosols from one side of the world influence rainfall in another
A field study of aerosol impacts on clouds and precipitation in the Sierra Nevada shows that dust and microorganisms transported from as far away as the Sahara desert help to spur the precipitation that California counts on for its water supply.

The CalWater field campaign, funded by the California Energy Commission and led by UC San Diego and NOAA, could help western states better understand the future of their water supply and hydropower generation as climate change influences how much and how often dust travels around the world and alters precipitation far from its point of origin.

"UC San Diego is a leader in addressing complex, multi-disciplinary global challenges, such as water shortages and environmental concerns," said UCSD Chancellor Pradeep K. Khosla. "Our researchers work collaboratively to investigate and produce meaningful and impactful research that will further our understanding of our planet and environment, so we can improve human life and our world."

Jessie Creamean, a postdoctoral associate at NOAA's Earth System Research Laboratory in Boulder, Colo., co-authored the paper appearing in the journal Science with Kaitlyn Suski, a graduate student in the laboratory of Distinguished Chair in Atmospheric Chemistry Prof. Kimberly Prather, who holds appointments at Scripps Institution of Oceanography and the Department of Chemistry and Biochemistry at UCSD.

Study leader UCSD Distinguished Chair in Atmospheric Chemistry Prof. Kimberly Prather

"We were able to show dust and biological aerosols that made it from as far as the Sahara were incorporated into the clouds to form ice, then influenced the formation of the precipitation in California," said Creamean, who conducted the fieldwork as a UCSD graduate student under Prather, the study leader. "To our knowledge, no one has been able to directly determine the origin of the critical aerosols seeding mid-level clouds which ultimately produce periods with extensive precipitation typically in the form of snow at the ground."

The study, "Dust and Biological Aerosols from the Sahara and Asia Influence Precipitation in the Western US," appears Feb. 28 in online versions of Science.

The path of aerosols that reached California in 2011. Circled numbers indicate locations in which dust was captured in CALIPSO images. Image: Science

Researchers have long known that winds can carry aerosols such as dust at altitudes above 5,000 meters (16,400 feet) from continent to continent. An unrelated 2009 study found that in one instance, Asian dust made a complete circuit around the planet in 13 days.

These dust particles can act as ice nuclei within clouds at warmer temperatures than would occur in their absence. They initiate the freezing of water vapor and water droplets, then precipitate as rain, snow, or hail depending on whether meteorological conditions enable them to attain sufficient mass to fall from the sky before evaporating. Without ice nuclei, ice would likely not form in clouds with temperatures above -38 degrees C (-36.4 degrees F).

Besides dust, aerosols can be composed of sea salt, bits of soot and other pollution, or biological material. Bacteria, viruses, pollen, and plants, of both terrestrial and marine origin, also add to the mix of aerosols making the transcontinental voyage.

The researchers' analysis of winter storms in 2011 found that dust and biological aerosols tend to enhance precipitation-forming processes in the Sierra Nevada. In previous studies, researchers have found that pollution particles have the opposite effect, suppressing precipitation in the Sierra Nevada.

Ryan Sullivan of Carnegie Mellon University (seated) and Paul DeMott of Colorado State University aboard a Department of Energy G-1 aircraft during CalWater. Photo: Carnegie Mellon University

The bulk of the data collected during CalWater came from instruments known as aerosol time-of-flight mass spectrometers (ATOFMS), co-developed by Prather, and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, which tracked the transport of aerosols through the atmosphere from continent to continent. Measurements in and around clouds utilized the Department of Energy's G-1 research aircraft, which carried other vital instruments, such as a specialized detector for the presence of dust ice nuclei feeding clouds and their presence in the collected residue of ice crystals. That portion of the study was led by co-author Paul DeMott, a senior research scientist at Colorado State University.

Using these tools, the researchers were able to determine that at least some of the dust and bioparticles detected by an aircraft-mounted ATOFMS unit during February 2011 flights through Sierra Nevada storm clouds were in the skies over Oman 10 days earlier, having likely originated in the Sahara a few days earlier. Along the journey, the Saharan dust and microbes mixed with other aerosols from deserts in China and Mongolia before wafting over the Pacific Ocean. Upon arrival in California, the aerosols effectively seeded the storm clouds and contributed to the efficiency of clouds in producing precipitation. Two other transportable ATOFMS units housed in trailers at Sugar Pine Dam just south of Interstate 80 in the Tahoe National Forest and other instruments made further measurements. They determined the chemical composition of aerosols at the end of their journey by looking at the particles present in precipitation samples that were collected during storms.

Study co-author Jessie Creamean at the Sierra Snow Lab in Norden, Calif
The researchers said it is a major challenge to sort out the relative impacts of meteorology, atmospheric dynamics, and the original sources of the cloud seeds on precipitation processes. They added that further studies like CalWater are necessary to further identify which aerosols are conducive to precipitation formation and which aerosols stifle its production.
"Due to the ubiquity of dust and co-lofted biological particles such as
bacteria in the atmosphere, these findings have global significance," the study concludes. "Furthermore, the implications for future water resources become even more substantial when considering the possible increase in [wind-blown] dust as a result of a warming climate and land use changes."

"Hydropower is an essential source of electricity in California providing, on average, 15 percent of our annual generation. More importantly, it provides electricity during hot summer days when it is needed the most," said Energy Commission Chair Robert B. Weisenmiller. "This state-funded study in cooperation with NOAA will help us understand how small particles in the air affect precipitation and hydropower generation. Additionally, this information will be useful in estimating the effects of our changing climate."

Besides Creamean, Suski, and Prather, study coauthors include Daniel Rosenfeld of the Hebrew University of Jerusalem, Alberto Cazorla of UCSD, Paul DeMott of Colorado State University, Ryan Sullivan of Carnegie Mellon University, Allen White, F. Martin Ralph of NOAA, Patrick Minnis of NASA's Langley Research Center, and Jennifer Comstock and Jason Tomlinson of the Pacific Northwest National Laboratory in Richland, Wash.
Note to broadcast and cable producers: University of California, San Diego provides an on-campus satellite uplink facility for live or pre-recorded television interviews. Please phone or e-mail the media contact listed above to arrange an interview.

About Scripps Institution of Oceanography
Scripps Institution of Oceanography at University of California, San Diego, is one of the oldest, largest and most important centers for global science research and education in the world. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,400, and annual expenditures of approximately $170 million from federal, state and private sources. Scripps operates robotic networks, and one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration. Birch Aquarium at Scripps serves as the interpretive center of the institution and showcases Scripps research and a diverse array of marine life through exhibits and programming for more than 415,000 visitors each year. Learn more at scripps.ucsd.edu.

Robert Monroe | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>