Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RV Polarstern returns with new findings from the Central Arctic during the 2012 ice minimum

10.10.2012
Polarstern is expected back from the Central Arctic expedition “IceArc“ in Bremerhaven on 8 October 2012 after a good two months.
54 scientists and technicians from twelve different countries conducted research on the retreat of the sea ice and the consequences for the Arctic Ocean and its ecosystems over a period of two months in the High North.

A number of new technologies were used for to film and photograph life in and below the ice down to a depth of 4400 metres. Since its departure from Tromsø (Norway) on 2 August 2012 Polarstern has travelled some 12,000 kilometres and conducted research at 306 stations. These included nine ice stations where the ship moored to an ice floe for several days to examine the ice, the water beneath it and the bottom of the sea.

Many measurements were concerned with responses to the rapid retreat of the sea ice this summer. The researchers determined that the thick multiyear sea ice in the area of investigation had declined further. With the so-called EM-Bird (electromagnetic sensor to record the thickness of sea ice) an area of 3,500 kilometres of sea ice was measured from a helicopter. As early as July 2012 the Siberian shelves including the Laptev Sea were free from ice, whereas in the summer of 2011 Polarstern had still encountered multiyear ice in this region. This means that the volume of ice is greatly reduced by melting. The fresh water content of the sea surface has increased accordingly as a result of the melting ice. “The Arctic of the future will consist of thinner sea ice which will therefore survive the summer less frequently, will drift more quickly and permit more light to penetrate the ocean.

This will lead to great changes in the composition of sea life“, says head of the expedition Prof. Dr. Antje Boetius, who manages the Helmholtz-Max-Planck Research Group for Deep-sea Ecology and Technology at the Alfred Wegener Institute.

With a new type of under-ice trawl, the researchers headed by Dr. Hauke Flores from the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association were able for the first time to conduct large-scale investigations of the communities living directly on the lower side of the Arctic pack ice. “We had a polar cod in our net almost every time. This species is particularly adapted to life below the ice; it does not occur without ice“, explained Flores on the significance of the sea ice as a habitat. The sea ice physicists from the Alfred Wegener Institute also used an under-ice robot to record the light incidence and distribution of algae on the lower side of the ice. They were able to detect the diatom Melosira artica in high concentrations also under the first-year ice in the central basin of the Arctic. These single cell algae can produce metre-long chains and form dense accumulations beneath the ice. Photos from the deep sea have shown that the algae largely dropped to the bottom of the sea as a result of the melting ice.

According to the findings of the returning Polar researchers, the rapid changes in the Arctic were not therefore restricted to the sea surface. Atlantic water flowing into the Arctic at a depth of several hundreds had an elevated temperature and salinity which could be measured down to a depth of several thousands of metres in the Arctic Basins. Images and measurements of the bottom of the sea showed for the first time that the deep sea of the Central Arctic is not a desert, but that frequently accumulations of sea cucumbers, sponges, feather stars and sea anemones gather to feed on the sea algae.
The warm temperatures, the retreat of the ice and the greater light availability beneath the ice causes the seasonality of the Central Arctic to shift. The production and the export of algae is taking place earlier compared with previous years, as the results of annually anchored sediment traps show. As a result of the extremely thin ice cover, Polarstern was able to navigate far into the North later in the year than usual. The sea ice physicists were therefore able to collect important data at the start of the freezing period. The measurements on the new thin ice are important, because this sea ice will occur more frequently in the future.

Interesting reports (in German), great photos and videos of the IceArc Polarstern expedition can be found in this blog at GEO http://www.geo.de/blog/geo/polarstern-expedition; please see English blog on our homepage: http://www.awi.de/index.php?id=6322

Notes for Editors: We will also be delighted to provide you with current video material on the expedition for reporting in HD quality. Edit decision list and access data on our ftp server can be obtained on request from Lars Grübner (phone: +49 (0)471 4831-1742; email: medien@awi.de). Printable images are available at http://www.awi.de/index.php?id=6374&L=1.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research icebreaker Polarstern and stations in the Arctic and Antarctic to the international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw
Further information:
http://www.awi.de

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

How brains surrender to sleep

23.06.2017 | Life Sciences

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>