Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Russian Fireball Largest Ever Detected by CTBTO’s Infrasound Sensors

20.02.2013
Infrasonic waves from the meteor that broke up over Russia’s Ural mountains last week were the largest ever recorded by the CTBTO’s International Monitoring System.
Infrasound is low frequency sound with a range of less than 10 Hz. The blast was detected by 17 infrasound stations in the CTBTO’s network, which tracks atomic blasts across the planet. The furthest station to record the sub-audible sound was 15,000km away in Antarctica.

The origin of the low frequency sound waves from the blast was estimated at 03:22 GMT on 15 February 2013. People cannot hear the low frequency waves that were emitted but they were recorded by the CTBTO’s network of sensors as they travelled across continents.

“We saw straight away that the event would be huge, in the same order as the Sulawesi event from 2009. The observations are some of the largest that CTBTO’s infrasound stations have detected,” CTBTO acoustic scientist, Pierrick Mialle said.
Until last week, the bolide explosion above Sulawesi, Indonesia, in October 2009 was the largest infrasound event registered by 15 stations in the CTBTO’s network.

Infrasound has been used as part of the CTBTO’s tools to detect atomic blasts since April 2001 when the first station came online in Germany. Data from the stations is sent in near real time to Vienna, Austria, for analysis at the CTBTO’s headquarters. Both the raw and analysed data are provided to all Member States.
“We know it’s not a fixed explosion because we can see the change in direction as the meteorite moves towards the earth. It’s not a single explosion, it’s burning, traveling faster than the speed of sound. That’s how we distinguish it from mining blasts or volcanic eruptions.

“Scientists all around the world will be using the CTBTO’s data in the next months and year to come, to better understand this phenomena and to learn more about the altitude, energy released and how the meteor broke up,” Mialle said.

The infrasound station at Qaanaaq, Greenland — featured in this video — was among those that recorded the meteor explosion in Russia. There are currently 45 infrasound stations in the CTBTO’s network that measure micropressure changes in the atmosphere generated by infrasonic waves. Like meteor blasts, atomic explosions produce their own distinctive, low frequency sound waves that can travel across continents (see how: http://www.youtube.com/watch?v=GVWOA5pZG6o&list=PLF85FBD7DB54DD0B1&index=3).

Infrasound is one of four technologies (including seismic, hydroacoustic and radionuclide) the CTBTO uses to monitor the globe for violations of the Comprehensive Nuclear-Test-Ban Treaty that bans all nuclear explosions.

Seismic signals from the meteor were also detected at several Kazakh stations close to the explosion and impact area. Listen to the audio files of the infrasound recording after it has been filtered and the signal accelerated: https://www.youtube.com/watch?v=H-8ij80vs1E

Days before the meteor on 12 February 2013, the CTBTO’s seismic network detected an unusual seismic event in the Democratic People’s Republic of Korea (DPRK), which measured 4.9 in magnitude. Later that morning, the DPRK announced that it had conducted a nuclear test. The event was registered by 94 seismic stations and two infrasound stations in the CTBTO’s network. The data processing and analysis are designed to weed out natural events and focus on those events that might be explosions, including nuclear explosions.
For further information on the CTBT, please see www.ctbto.org – your resource on ending nuclear testing,

or contact:

Annika Thunborg,
Spokesperson and Chief, Public Information
T +43 1 26030-6375
E annika.thunborg@ctbto.org
M +43 699 1459 6375
I www.ctbto.org

Annika Thunborg | EurekAlert!
Further information:
http://www.ctbto.org

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>