Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Russian Fireball Largest Ever Detected by CTBTO’s Infrasound Sensors

20.02.2013
Infrasonic waves from the meteor that broke up over Russia’s Ural mountains last week were the largest ever recorded by the CTBTO’s International Monitoring System.
Infrasound is low frequency sound with a range of less than 10 Hz. The blast was detected by 17 infrasound stations in the CTBTO’s network, which tracks atomic blasts across the planet. The furthest station to record the sub-audible sound was 15,000km away in Antarctica.

The origin of the low frequency sound waves from the blast was estimated at 03:22 GMT on 15 February 2013. People cannot hear the low frequency waves that were emitted but they were recorded by the CTBTO’s network of sensors as they travelled across continents.

“We saw straight away that the event would be huge, in the same order as the Sulawesi event from 2009. The observations are some of the largest that CTBTO’s infrasound stations have detected,” CTBTO acoustic scientist, Pierrick Mialle said.
Until last week, the bolide explosion above Sulawesi, Indonesia, in October 2009 was the largest infrasound event registered by 15 stations in the CTBTO’s network.

Infrasound has been used as part of the CTBTO’s tools to detect atomic blasts since April 2001 when the first station came online in Germany. Data from the stations is sent in near real time to Vienna, Austria, for analysis at the CTBTO’s headquarters. Both the raw and analysed data are provided to all Member States.
“We know it’s not a fixed explosion because we can see the change in direction as the meteorite moves towards the earth. It’s not a single explosion, it’s burning, traveling faster than the speed of sound. That’s how we distinguish it from mining blasts or volcanic eruptions.

“Scientists all around the world will be using the CTBTO’s data in the next months and year to come, to better understand this phenomena and to learn more about the altitude, energy released and how the meteor broke up,” Mialle said.

The infrasound station at Qaanaaq, Greenland — featured in this video — was among those that recorded the meteor explosion in Russia. There are currently 45 infrasound stations in the CTBTO’s network that measure micropressure changes in the atmosphere generated by infrasonic waves. Like meteor blasts, atomic explosions produce their own distinctive, low frequency sound waves that can travel across continents (see how: http://www.youtube.com/watch?v=GVWOA5pZG6o&list=PLF85FBD7DB54DD0B1&index=3).

Infrasound is one of four technologies (including seismic, hydroacoustic and radionuclide) the CTBTO uses to monitor the globe for violations of the Comprehensive Nuclear-Test-Ban Treaty that bans all nuclear explosions.

Seismic signals from the meteor were also detected at several Kazakh stations close to the explosion and impact area. Listen to the audio files of the infrasound recording after it has been filtered and the signal accelerated: https://www.youtube.com/watch?v=H-8ij80vs1E

Days before the meteor on 12 February 2013, the CTBTO’s seismic network detected an unusual seismic event in the Democratic People’s Republic of Korea (DPRK), which measured 4.9 in magnitude. Later that morning, the DPRK announced that it had conducted a nuclear test. The event was registered by 94 seismic stations and two infrasound stations in the CTBTO’s network. The data processing and analysis are designed to weed out natural events and focus on those events that might be explosions, including nuclear explosions.
For further information on the CTBT, please see www.ctbto.org – your resource on ending nuclear testing,

or contact:

Annika Thunborg,
Spokesperson and Chief, Public Information
T +43 1 26030-6375
E annika.thunborg@ctbto.org
M +43 699 1459 6375
I www.ctbto.org

Annika Thunborg | EurekAlert!
Further information:
http://www.ctbto.org

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms

05.12.2016 | Life Sciences

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>