Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Running hot and cold in the deep sea: Scientists explore rare environment

07.03.2012
Researchers discover unknown species at juncture where hot and cold habitats collide

Among the many intriguing aspects of the deep sea, Earth's largest ecosystem, exist environments known as hydrothermal vent systems where hot water surges out from the seafloor. On the flipside the deep sea also features cold areas where methane rises from "seeps" on the ocean bottom.

It's extremely rare to find both habitat types intersecting in one place, but that's what researchers found and explored during an expedition in 2010 off Costa Rica. A description of the scientists' findings, including a large number of mysterious, undescribed species, is published in a study led by Lisa Levin of Scripps Institution of Oceanography at UC San Diego in the March 7 issue of the Proceedings of the Royal Society B (Biological Sciences).

Because researchers who study such areas primarily focus on hydrothermal vent systems or methane seeps, Levin and her colleagues were surprised to find a hybrid site in an area where only cold seeps have been previously reported. They coined the phrase "hydrothermal seep" to describe the ecosystem.

"The most interesting aspects of this site are the presence of vent-like and seep-like features together," said Levin, "along with a vast cover of tubeworms over large areas and a wealth of new, undescribed species."

The researchers investigated the geochemical properties of the area—known as the Jaco Scar at the Costa Rica margin where an underwater mountain is moving under a tectonic plate—along with small organisms and microbes. Co-existing animals ranged from those known to primarily inhabit hot vents or cold seeps, along with "foundation" species that exist in both settings. In addition to tube worms the team documented fish, mussels, clam beds and high densities of crabs.

Because so little is known about the deep ocean, the researchers say it's likely that further hybrid or "mosaic" ecosystems remain undiscovered, possibly featuring marine life specialized to live in such an environment.

"There are plenty of surprises left in the deep sea," said Levin, director of the Scripps Center for Marine Biodiversity and Conservation. "Not only are there new species but there are almost certainly new communities and ecosystems to be discovered." "In this instance the human presence, in the submersible ALVIN, was key to our findings. The site had been visited remotely by other researchers, but it was not until human eyes saw shimmering water coming from beneath a large tubeworm bush that we really understood how special Jaco Scar is."

Coauthors of the paper include Greg Rouse, Geoffrey Cook and Ben Grupe of Scripps Institution of Oceanography; Victoria Orphan and Grayson Chadwick of the California Institute of Technology; Anthony Rathburn of Indiana State University; William Ussler III of Monterey Bay Aquarium Research Institute; Shana Goffredi of Occidental College; Elena Perez of the Natural History Museum in London; Anders Waren of the Swedish Museum of Natural History; and Bruce Strickrott of Woods Hole Oceanographic Institution.

The National Science Foundation supported the research. Assistance was provided by the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica.

Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>