Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Running hot and cold in the deep sea: Scientists explore rare environment

07.03.2012
Researchers discover unknown species at juncture where hot and cold habitats collide

Among the many intriguing aspects of the deep sea, Earth's largest ecosystem, exist environments known as hydrothermal vent systems where hot water surges out from the seafloor. On the flipside the deep sea also features cold areas where methane rises from "seeps" on the ocean bottom.

It's extremely rare to find both habitat types intersecting in one place, but that's what researchers found and explored during an expedition in 2010 off Costa Rica. A description of the scientists' findings, including a large number of mysterious, undescribed species, is published in a study led by Lisa Levin of Scripps Institution of Oceanography at UC San Diego in the March 7 issue of the Proceedings of the Royal Society B (Biological Sciences).

Because researchers who study such areas primarily focus on hydrothermal vent systems or methane seeps, Levin and her colleagues were surprised to find a hybrid site in an area where only cold seeps have been previously reported. They coined the phrase "hydrothermal seep" to describe the ecosystem.

"The most interesting aspects of this site are the presence of vent-like and seep-like features together," said Levin, "along with a vast cover of tubeworms over large areas and a wealth of new, undescribed species."

The researchers investigated the geochemical properties of the area—known as the Jaco Scar at the Costa Rica margin where an underwater mountain is moving under a tectonic plate—along with small organisms and microbes. Co-existing animals ranged from those known to primarily inhabit hot vents or cold seeps, along with "foundation" species that exist in both settings. In addition to tube worms the team documented fish, mussels, clam beds and high densities of crabs.

Because so little is known about the deep ocean, the researchers say it's likely that further hybrid or "mosaic" ecosystems remain undiscovered, possibly featuring marine life specialized to live in such an environment.

"There are plenty of surprises left in the deep sea," said Levin, director of the Scripps Center for Marine Biodiversity and Conservation. "Not only are there new species but there are almost certainly new communities and ecosystems to be discovered." "In this instance the human presence, in the submersible ALVIN, was key to our findings. The site had been visited remotely by other researchers, but it was not until human eyes saw shimmering water coming from beneath a large tubeworm bush that we really understood how special Jaco Scar is."

Coauthors of the paper include Greg Rouse, Geoffrey Cook and Ben Grupe of Scripps Institution of Oceanography; Victoria Orphan and Grayson Chadwick of the California Institute of Technology; Anthony Rathburn of Indiana State University; William Ussler III of Monterey Bay Aquarium Research Institute; Shana Goffredi of Occidental College; Elena Perez of the Natural History Museum in London; Anders Waren of the Swedish Museum of Natural History; and Bruce Strickrott of Woods Hole Oceanographic Institution.

The National Science Foundation supported the research. Assistance was provided by the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica.

Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>