Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robotic Ocean Gliders Aid Study of Melting Polar Ice

11.11.2014

The rapidly melting ice sheets on the coast of West Antarctica are a potential major contributor to rising ocean levels worldwide.

Although warm water near the coast is thought to be the main factor causing the ice to melt, the process by which this water ends up near the cold continent is not well understood.


Oceanographers Liz Creed (Kongsberg, Inc.) and Andy Thompson (Caltech) run through a series of tests in preparation for the release of a Seaglider into the Weddell Sea in January 2012.

Credit: Alan Jamieson/Caltech

Using robotic ocean gliders, Caltech researchers have now found that swirling ocean eddies, similar to atmospheric storms, play an important role in transporting these warm waters to the Antarctic coast—a discovery that will help the scientific community determine how rapidly the ice is melting and, as a result, how quickly ocean levels will rise.

Their findings were published online on November 10 in the journal Nature Geoscience.

"When you have a melting slab of ice, it can either melt from above because the atmosphere is getting warmer or it can melt from below because the ocean is warm," explains lead author Andrew Thompson, assistant professor of environmental science and engineering. "All of our evidence points to ocean warming as the most important factor affecting these ice shelves, so we wanted to understand the physics of how the heat gets there."

Ordinarily when oceanographers like Thompson want to investigate such questions, they use ships to lower instruments through the water or they collect ocean temperature data from above with satellites. These techniques are problematic in the Southern Ocean. "Observationally, it's a very hard place to get to with ships. Also, the warm water is not at the surface, making satellite observations ineffective," he says.

Because the gliders are small—only about six feet long—and are very energy efficient, they can sample the ocean for much longer periods than large ships can. When the glider surfaces every few hours, it "calls" the researchers via a mobile phone–like device located on the tail. This communication allows the researchers to almost immediately access the information the glider has collected.

Like airborne gliders, the bullet-shaped ocean gliders have no propeller; instead they use batteries to power a pump that changes the glider's buoyancy. When the pump pushes fluid into a compartment inside the glider, the glider becomes denser than seawater and less buoyant, thus causing it to sink. If the fluid is pumped instead into a bladder on the outside of the glider, the glider becomes less dense than seawater—and therefore more buoyant—ultimately rising to the surface. Like airborne gliders, wings convert this vertical lift into horizontal motion.

Thompson and his colleagues from the University of East Anglia dropped their gliders into the ocean off the coast of the Antarctic Peninsula in January 2012; the robotic vehicles then spent the next two months moving up and down through the water column—diving a kilometer below the surface of the water and back up again every few hours—exploring the Weddell Sea off the coast of Antarctica. As the gliders traveled, they collected temperature and salinity data at different locations and depths of the sea.

The glider's up and down capability is important for studying ocean stratification, or how water characteristics, such as density, change with depth, Thompson says. "If it was only temperature that determined density, you'd always have warm water at the top and cold water at the bottom. But in the ocean you also have to factor in salinity; the higher the salinity is in the water, the more dense that water is and the more likely it is to sink to the bottom," he says.

In Antarctica the combined effects of temperature and salinity create an interesting situation, in which the warmest water is not on top, but actually sandwiched in the middle layers of the water column. "That's an additional problem in understanding the heat transport in this region," he adds. You can't just take measurements at the surface, he says. "You actually need to be taking a look at that very warm temperature layer, which happens to sit in the middle of the water column. That's the layer that is actually moving toward the ice shelf."

The results from the gliders revealed that the heat was actually coming from a less predictable source: eddies, swirling underwater storms that are caused by ocean currents.

"Eddies are instabilities that are caused by ocean currents, and we often compare their effect on the ocean to putting a spoon in your coffee," Thompson says. "If you pour milk in your coffee and then you stir it with a spoon, the spoon enhances your ability to mix the milk into the coffee and that is what these eddies do. They are very good at mixing heat and other properties."

Because the gliders could dive and surface every few hours and remain at sea for months, they were able to see these eddies in action—something that ships and satellites had previously been unable to capture.

"Ocean currents are variable, and so if you go just one time, what you measure might not be what the current looks like a day later. It's sort of like the weather—you know it's going to be warm in the summer and cold in the winter, but on a day-to-day basis it could be cold in the summer just because a storm came in," Thompson says. "Eddies do the same thing in the ocean, so unless you understand how the temperature of currents is changing from day to day—information we can actually collect with the gliders—then you can't understand what the long-term heat transport is."

In future work, Thompson plans to couple meteorological data with the data collected from his gliders. In December, the team will use ocean gliders to study a rough patch of ocean between the southern tip of South America and Antarctica, called the Drake Passage, as a surface robot, called a Waveglider, collects information from the surface of the water. "With the Waveglider, we can measure not just the ocean properties, but atmospheric properties as well, such as wind speed and wind direction. So we'll get to actually see what's happening at the air-sea interface."

In the Drake Passage, deep waters from the Southern Ocean are "ventilated"—or emerge at the surface—a phenomenon specific to this region of the ocean. That makes the location important for understanding the exchange of carbon dioxide between the atmosphere and the ocean. "The Southern Ocean is the window through which deep waters can actually come up to 'see' the atmosphere"—and it's also a window for oceanographers to more easily see the deep ocean, he says. "It's a very special place for many reasons."

The work with ocean gliders was published in a paper titled "Eddy transport as a key component of the Antarctic overturning circulation." Other authors on the paper include Karen J. Heywood of the University of East Anglia, Sunke Schmidtko of GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany, and Andrew Stewart, a former postdoctoral scholar at Caltech who is now at UCLA. Thompson's glider work was supported by an award from the National Science Foundation and the UK's Natural Environment Research Council; Stewart was supported by the President's and Director's Fund program at Caltech.

Written by Jessica Stoller-Conrad

Contact:
Deborah Williams-Hedges

(626) 395-3227

debwms@caltech.edu

Deborah Williams-Hedges | EurekAlert!
Further information:
http://www.caltech.edu/content/robotic-ocean-gliders-aid-study-melting-polar-ice

Further reports about: Antarctic Antarctica Melting Polar Robotic heat transport properties temperature water column

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>