Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New robot travels across the seafloor to monitor the impact of climate change on deep-sea ecosystems

10.09.2009
Like the robotic rovers Spirit and Opportunity, which wheeled tirelessly across the dusty surface of Mars, a new robot spent most of July traveling across the muddy ocean bottom, about 40 kilometers (25 miles) off the California coast.

This robot, the Benthic Rover, has been providing scientists with an entirely new view of life on the deep seafloor. It will also give scientists a way to document the effects of climate change on the deep sea. The Rover is the result of four years of hard work by a team of engineers and scientists led by MBARI project engineer Alana Sherman and marine biologist Ken Smith.

About the size and weight of a small compact car, the Benthic Rover moves very slowly across the seafloor, taking photographs of the animals and sediment in its path. Every three to five meters (10 to 16 feet) the Rover stops and makes a series of measurements on the community of organisms living in the seafloor sediment. These measurements will help scientists understand one of the ongoing mysteries of the ocean-how animals on the deep seafloor find enough food to survive.

Most life in the deep sea feeds on particles of organic debris, known as marine snow, which drift slowly down from the sunlit surface layers of the ocean. But even after decades of research, marine biologists have not been able to figure out how the small amount of nutrition in marine snow can support the large numbers of organisms that live on and in seafloor sediment.

The Benthic Rover carries two experimental chambers called "benthic respirometers" that are inserted a few centimeters into the seafloor to measure how much oxygen is being consumed by the community of organisms within the sediment. This, in turn, allows scientists to calculate how much food the organisms are consuming. At the same time, optical sensors on the Rover scan the seafloor to measure how much food has arrived recently from the surface waters.

MBARI researchers have been working on the Benthic Rover since 2005, overcoming many challenges along the way. The most obvious challenge was designing the Rover to survive at depths where the pressure of seawater is about 420 kilograms per square meter (6,000 pounds per square inch). To withstand this pressure, the engineers had to shield the Rover's electronics and batteries inside custom-made titanium pressure spheres.

To keep the Rover from sinking into the soft seafloor mud, the engineers outfitted the vehicle with large yellow blocks of buoyant foam that will not collapse under extreme pressure. This foam gives the Rover, which weighs about 1,400 kilograms (3,000 pounds) in air, a weight of only about 45 kilograms (100 pounds) in seawater.

Other engineering challenges required less high-tech solutions. In constructing the Rover's tractor-like treads, the design team used a decidedly low-tech material-commercial conveyor belts. After watching the Benthic Rover on the seafloor using MBARI's remotely operated vehicles (ROVs), however, the researchers discovered that the belts were picking up mud and depositing it in front of the vehicle, where it was contaminating the scientific measurements. In response, the team came up with a low-tech but effective solution: they removed the heads from two push brooms and bolted them onto the vehicle so that the stiff bristles would clean off the treads as they rotated.

The team also discovered that whenever the Rover moved, it stirred up a cloud of sediment like the cloud of dust that follows the character "Pig-Pen" in the Charlie Brown comic strip. This mud could have affected the Rover's measurements. To reduce this risk, the engineers programmed the Rover to move very, very slowly-about one meter (3 feet) a minute. The Rover is also programmed to sense the direction of the prevailing current, and only move in an up-current direction, so that any stirred-up mud will be carried away from the front of the vehicle.

In its basic configuration, the Benthic Rover is designed to operate on batteries, without any human input. However, during its month-long journey this summer, the Rover was connected by a long extension cord to a newly-completed underwater observatory. This observatory, known as the Monterey Accelerated Research System (MARS), provided power for the robot, as well as a high-speed data link back to shore.

According to Sherman, "Hooking up the Rover to the observatory opened up a whole new world of interactivity. Usually when we deploy the Rover, we have little or no communication with the vehicle. We drop it overboard, cross our fingers, and hope that it works." In this case, however, the observatory connection allowed MBARI researchers to fine tune the Rover's performance and view its data, videos, and still images in real time. Sherman recalls, "One weekend I was at home, with my laptop on the kitchen table, controlling the vehicle and watching the live video from 900 meters below the surface of Monterey Bay. It was amazing!"

Later this fall, the Rover will be sent back down to the undersea observatory site in Monterey Bay for a two-month deployment. Next year the team hopes to take the Rover out to a site about 220 km (140 miles) offshore of Central California. They will let the Rover sink 4,000 meters down to the seafloor, where it will make measurements on its own for six months. The team would also like to take the Rover to Antarctica, to study the unique seafloor ecosystems there. The Rover may also be hooked up to a proposed deep-water observatory several hundred miles off the coast of Washington state.

In addition to answering some key questions of oceanography, the Benthic Rover will help researchers study the effects of climate change in the ocean. As the Earth's atmosphere and oceans become warmer, even life in the deep sea will be affected. The Benthic Rover, and its possible successors, will help researchers understand how deep-sea communities are changing over time.

Just as the rovers Spirit and Opportunity gave us dramatic new perspectives on the planet Mars, so the Benthic Rover is giving researchers new perspectives of a dark world that is in some ways more mysterious than the surface of the distant red planet.

Kim Fulton-Bennett | MBARI News Release
Further information:
http://www.mbari.org

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>