Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New robot scouts best locations for components of undersea lab

Like a deep-sea bloodhound, Sentry – the newest in an elite group of unmanned submersibles able to operate on their own in demanding and rugged environments – has helped scientists pinpoint optimal locations for two observation sites of a pioneering seafloor laboratory being planned off Washington and Oregon.

Successful selection of the two sites is a crucial step in developing an extensive sensor network above and below the seafloor on the Juan de Fuca Plate, according to John Delaney, University of Washington oceanographer and chief scientist for a two-week mapping expedition.

The network, which will be connected to land by underwater cables from locations near Warrenton and Pacific City, Ore., will help unlock secrets about such things as the ocean's ability to absorb greenhouse gases and help scientists learn how seafloor stresses cause earthquakes and tsunamis. The network is one component of a wider project being overseen by the Consortium for Ocean Leadership as part of the National Science Foundation's Oceans Observatories Initiative.

"The ocean community is on the threshold of a new era in which an ensemble of novel technologies will provide us with an increasingly powerful capacity for exploring and interacting with the global ocean system," Delaney said. "The cruise itself is an example of the coming generation of systems, where highly capable autonomous underwater vehicles like Sentry will be integral components. Today's AUVs are helping us develop the power and high-speed communications network we'll need to explore powerful and potentially dangerous processes at underwater volcanoes, within powerful tsunamis or in the wake of large storms and hurricanes."

In plans thus far, cables from two places on land will extend to five primary nodes – each about the size of a large dinner table. Like underwater extension cords, the nodes will supply power to – and communicate with – instruments, robots and smaller secondary nodes.

Choosing the right sites involved mapping and imaging in remarkable detail using sonar instruments, a towed camera and Sentry. Sentry, for instance, produces maps precise to within 1 meter, or about 3 ½ feet, as it glides about 250 feet above the seafloor. Operators program the vehicle with directions of the area to map but the vehicle is on its own when it comes to maneuvering up and down cliffs, basins and other terrain that it encounters, all while keeping a consistent distance from the bottom.

The one-of-a-kind autonomous underwater vehicle – built by Woods Hole Oceanographic Institution with funding largely from the National Science Foundation – made six dives during the July 22 to Aug. 5 expedition. It was the first time the vehicle has been used during an actual oceanographic research cruise. Sentry surveyed 212 linear kilometers of seafloor, or about 53 square kilometers, as it traced parallel lines like a lawn mower making a pattern across a yard.

"Seeing the first maps pop up on our screen was a real thrill for us, they represent the results of hard work by all members of our team," said Dana Yoerger, the lead Woods Hole Oceanographic Institution engineer of Sentry. See WHOI release about Sentry at

The work made it possible to finalize locations for two critical sites. One is near an area 50 miles off Newport, Ore., where scientists would like to learn more about the icy methane that collects on or below the seafloor where the Juan de Fuca plate dives beneath North America.

"Most developed nations have major research efforts focused on understanding – and learning to use – these energy-rich deposits of methane," Delaney said. "Our plan is to build the infrastructure that will allow entire generations of scientists to study these deposits firsthand using robotic telepresence – no other country is there yet." The other site is about 300 miles west of Cannon Beach, Ore., and in a decidedly different environment. That one's on top of Axial Seamount, the largest active submarine volcano east of Hawaii and north of Baja California, Mexico. Earthquakes, eruptions and hydrothermal venting at Axial Seamount are representative of what happens worldwide along the 43,000 mile Mid-Ocean Ridge System.

"The key to choosing these locations is to find sites that are protected but within reach of really interesting processes that we're trying to investigate," said Deborah Kelley, UW oceanographer and co-chief scientist on the expedition. For details of the all the tools used, as well as preliminary surveying for other parts of the planned observatory, see the expedition's Web site at

Sandra Hines | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

More VideoLinks >>>