Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

River ice reveals new twist on Arctic melt

03.04.2014

A new study led by Lance Lesack, a Simon Fraser University geographer and Faculty of Environment professor, has discovered unexpected climate-driven changes in the mighty Mackenzie River’s ice breakup. This discovery may help resolve the complex puzzle underlying why Arctic ice is disappearing more rapidly than expected.

Lesack is the lead author on Local spring warming drives earlier river-ice breakup in a large Arctic delta. Published recently in Geophysical Research Letters, the study has co-authors at Wilfrid Laurier University, the University of Alberta and Memorial University.

Its goal was to understand how warming global temperatures and the intensifying Arctic hydrological cycle associated with them may be driving increasing water discharges and more rapid ice breakup in the Arctic’s great rivers.

But the researchers stumbled upon an unexpected phenomenon while trying to figure out why the Mackenzie River’s annual ice breakup has been shortening even though its water discharge isn’t increasing, as in Russian rivers.

... more about:
»Arctic »River »SFU »levels »phenomenon »roads »snowfall »spring »temperatures

Just slightly warmer springs with unexpected snowfall declines — rather than warmer winters or increasing river discharge, as previously suspected — can drive earlier-than-expected ice breakup in great Arctic rivers.

The Mackenzie exemplifies this unexpected phenomenon. The researchers discovered this by accessing records dating back to 1958 of the river’s water levels, snow depths, air temperatures and times of ice breakup.

This finding is significant, as Arctic snow and ice systems are important climate-system components that affect the Earth’s ability to reflect solar radiation.

“Our surprising finding was that spring temperatures, the period when river-ice melt occurs, had warmed by only 3.2 degrees Celsius. Yet this small change was responsible for more than 80 per cent of the variation in the earlier ice breakups, whereas winter temperatures had warmed by 5.3 degrees but explained little of this variation,” says Lesack.

“This is a strong response in ice breakup for a relatively modest degree of warming, but further investigation showed that by winter’s end snow depths had also declined by one third over this period. The lesser snow depths mean less solar energy is needed to drive ice breakup.”

Lesack says this is the first field-based study to uncover an important effect of reduced winter snowfall and warmer springs in the Arctic — earlier-than-expected, climate-change-related ice breakup.

“The polar regions have a disproportionate effect on planetary reflectivity because so much of these regions consist of ice and snow,” says Lesack. “Most of the planetary sea ice is in the Arctic and the Arctic landmass is also seasonally covered by extensive snow. If such ice and snow change significantly, this will affect the global climate system and would be something to worry about.”

Lesack hopes this study’s findings motivate Canadian government agencies to reconsider their moves towards reducing or eliminating ground-based monitoring programs that measure important environmental variables.

There are few long-term, ground-based snow depth records from the Arctic. This study’s findings were based on such records at Inuvik dating back to 1958. They significantly pre-dated remote sensing records that extend back only to 1980. Without this longer view into the past, this study’s co-authors would still be in the dark about the more rapid than expected Arctic melt and planetary heat-up happening.

Backgrounder:

Quotes by Lance Lesack

  • “Our work suggests that the effects of reduced winter snowfall should be further investigated in other aspects of the changing Arctic, such as the surprisingly rapid reduction in sea-ice cover and the unexpected collapses of several Canadian ice shelves.”
  • “Our findings should also be of interest to people and industries that exist in the Arctic, where changes in the growth and decay of rivers, lakes or sea-ice may affect their daily lives. Ice roads and shipping over them depend on knowing when the ice roads can be travelled upon or when ferry crossings can be operated during open water.”

Facts:

  • Canada’s Mackenzie and several Russian rivers are among the Arctic’s gigantic waterways. The hydrological cycle is the cycling of water from the oceans to the atmosphere and back down to the continents, which the rivers then drain back to the ocean. Planetary warming hastens this cycle, which should lead to higher river discharge, more rapid river ice breakup, and ultimately more extreme weather patterns.
  •  About a third of the size of Switzerland and reaching 200 kilometres inland, the Mackenzie River delta sits at the end of Canada’s longest river and sustains 45,000 lakes.
  • The Mackenzie River delta and other Arctic deltas are considered biological hotspots because their sites have much higher biological productivity and biodiversity than their surrounding Arctic environment. Their peak river levels enhance marine ecosystems by flushing nutrients and organic matter from vast deltas that sit at freshwater-ocean water interfaces into the ocean.
  • In 2007 SFU geographer Lance Lesack co-authored a study that found rising water levels in the Mackenzie River delta, induced by climate-related sea-level rise, were three times higher than predicted. The authors worried that the faster-than-expected changes could have important impacts on the region’s human and animal life, and industry.

Simon Fraser University is consistently ranked among Canada's top comprehensive universities and is one of the top 50 universities in the world under 50 years old. With campuses in Vancouver, Burnaby and Surrey, B.C., SFU engages actively with the community in its research and teaching, delivers almost 150 programs to more than 30,000 students, and has more than 125,000 alumni in 130 countries.

Contact:
Lance Lesack (Langley resident), 778.782.3326, llesack@sfu.ca
Carol Thorbes, PAMR, 778.782.3035, cthorbes@sfu.ca

Carol Thorbes | EurekAlert!
Further information:
http://www.sfu.ca/pamr/media-releases/2014/river-ice-reveals-new-twist-on-arctic-melt.html

Further reports about: Arctic River SFU levels phenomenon roads snowfall spring temperatures

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>