Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

River delta areas can provide clue to environmental changes

13.05.2009
Sediments released by many of the world's largest river deltas to the global oceans have been changed drastically in the last 50 years, largely as a result of human activity, says a Texas A&M University researcher who emphasizes that the historical information that can be gathered from sediment cores collected in and around these large deltaic regions is critical for a better understanding of environmental changes in the 21st century.

Thomas Bianchi, a professor in the Department of Oceanography who specializes in estuarine and marine systems, and colleague Mead Allison of the University of Texas have examined sediments from delta areas around the world, most notably the Mississippi in the United States and the (Huanghe) Yellow and Yangtze in China.

These sediments contain information that can provide data on past changes in nitrogen application in the drainage basin from agricultural fertilizers, records of past flooding and hurricane events, to name a few, Bianchi says.

Their work is published in the current issue of the "Proceedings of the National Academy of Sciences."

"These deltaic sediments can serve as a history book of sorts on land-use change in these large drainage basins which is useful for upland and coastal management decisions as related to climate change issues," Bianchi explains.

"Although the information stored in these sediments can be altered during its transport from the upper drainage basin to the coast, we still find very stable tracers, both organic and inorganic, that can be used to document changes induced by natural and human forces."

Such sediments are ever-present, the authors say, noting that 87 percent of the Earth's land surface is connected to the ocean by river systems. They also explain that 61 percent of the world's population lives along a coastal boundary, and that number is expected to climb to 75 percent by 2025.

Much of the sediment from rivers forms into what are called large river delta-front estuaries, or LDEs, and human activity in some of these can be traced back more than 5,000 years ago to some of the first cities in Mesopotamia, along the Nile and in regions of China.

The knowledge learned from these delta areas tell about the history of the region from how the land was used – or not used – through time, the authors say. The world's largest 25 rivers drain about one-half of the Earth's surface and transport 50 percent of the fresh water and 40 percent of particulate materials into the ocean, they confirm.

The Mississippi River, the largest in the U.S., drains about 40 percent of the country's total land mass, plus parts of two Canadian provinces, the authors say, and we can learn critical information from its delta regions.

In the U.S., hypoxic areas – where there is little or no oxygen – can in some cases be linked with deltaic regions that are releasing large amounts of water and nutrients, Bianchi explains. "Low oxygen in aquatic systems is clearly not good for the organisms in those systems, but not all aquatic systems respond in the same way," he notes. "It affects marine life in some areas severely, while other areas seem unchanged. We need to find out why.

"Some LDE areas such as the Mississippi/Atchafalaya River system have had significant increases in the nutrient loading from fertilizers" Bianchi adds. "We know we need to reduce the amount of these nutrients from draining into our rivers, but by how much? In this particular case, the linkages between excessive nutrients, hypoxia and their affects on aquatic life are not well understood.

"It's a big problem that China is facing right now as it attempts to manage severe water shortages, over-grazing and desertification issues for a growing population by manipulating natural water sources from their major rivers through damming and diversions. Over the last 20 years, China has become the world's largest consumer of fertilizers and two of its rivers, the Yellow and the Yangtze, are among the top five in the world in terms of sediment discharge.

"Also, many scientists are expecting global temperatures to rise over the next 50 years due to climate changes, and how will these changes affect precipitation and soil erosion issues? We really don't know now because in many cases, land-use change by growing populations can be very short-term and unpredictable, making modeling very difficult. These deltaic sediments might be able to give us some clues about what is ahead for us."

Their work was funded by NASA, the Department of Energy, the Office of Naval Research and the National Science Foundation.

Contact: Thomas Bianchi at (979) 845-5137 or email at tbianchi@tamu.edu or Keith Randall at (979) 845-4644 or email at keith-randall@tamu.edu.

About research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $582 million, which ranks third nationally for universities without a medical school, and underwrites approximately 3,500 sponsored projects. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Thomas Bianchi | EurekAlert!
Further information:
http://www.tamu.edu
http://tamunews.tamu.edu

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>