Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Risk of even greater climate change

26.07.2010
The impact that emissions have on the climate partly depends on the land carbon cycle, i.e. how carbon dioxide is absorbed by the biosphere. However, there are other feedback mechanisms within ecosystems that are not included in today’s climate models and that could add to climate change in the future.

It is important to take into account these biogeochemical feedbacks in research on climate change, according to an international research group led by ecosystems researcher Almut Arneth from Lund University.

The research group has assembled an overview of the current knowledge on this subject, which has been published in Nature Geoscience on 25 July 2010. In it they describe a range of mechanisms that are linked to a warmer climate: increased carbon dioxide and methane emissions from wetlands, emissions of nitrogen oxides from the ground, emissions of volatile organic compounds from forests, and emissions of gases and soot from fires.

These mechanisms affect the amount of greenhouse gases in the lower atmosphere, including ozone, which not only has an impact on the climate but which also impacts negatively on vegetation and people. These mechanisms become stronger as the temperature rises, while they also contribute to warming the climate.

“A number of these mechanisms have not been well researched. In some cases, we know all too little about how they influence one another, for example how changes in the nitrogen cycle affect the uptake of carbon dioxide by vegetation. Together these could be very significant for the climate”, says Almut Arneth.

Vegetation absorbs carbon dioxide and this currently slows down the rise in temperature caused by the emissions. However, in a warmer climate this ‘damper’ does not work as well and this could mean a significant reduction in the absorption of carbon dioxide by vegetation in the future, in addition to increased release of other climate-active gases.

In a warming climate, the help currently provided by vegetation to slow climate change could become smaller and smaller, say the researchers behind the article in Nature Geoscience. Therefore, their view is that these feedback mechanisms must be taken into account in the calculations in future climate models.

The work has formed part of iLEAPS/IGBP, the Integrated Land Ecosystem-Atmosphere Processes Study from the International Geosphere-Biosphere Programme.

For more information please contact Almut Arneth, almut.arneth@nateko.lu.se.

Ingemar Björklund | idw
Further information:
http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo905.html
http://www.vr.se

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>