Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Risk of even greater climate change

26.07.2010
The impact that emissions have on the climate partly depends on the land carbon cycle, i.e. how carbon dioxide is absorbed by the biosphere. However, there are other feedback mechanisms within ecosystems that are not included in today’s climate models and that could add to climate change in the future.

It is important to take into account these biogeochemical feedbacks in research on climate change, according to an international research group led by ecosystems researcher Almut Arneth from Lund University.

The research group has assembled an overview of the current knowledge on this subject, which has been published in Nature Geoscience on 25 July 2010. In it they describe a range of mechanisms that are linked to a warmer climate: increased carbon dioxide and methane emissions from wetlands, emissions of nitrogen oxides from the ground, emissions of volatile organic compounds from forests, and emissions of gases and soot from fires.

These mechanisms affect the amount of greenhouse gases in the lower atmosphere, including ozone, which not only has an impact on the climate but which also impacts negatively on vegetation and people. These mechanisms become stronger as the temperature rises, while they also contribute to warming the climate.

“A number of these mechanisms have not been well researched. In some cases, we know all too little about how they influence one another, for example how changes in the nitrogen cycle affect the uptake of carbon dioxide by vegetation. Together these could be very significant for the climate”, says Almut Arneth.

Vegetation absorbs carbon dioxide and this currently slows down the rise in temperature caused by the emissions. However, in a warmer climate this ‘damper’ does not work as well and this could mean a significant reduction in the absorption of carbon dioxide by vegetation in the future, in addition to increased release of other climate-active gases.

In a warming climate, the help currently provided by vegetation to slow climate change could become smaller and smaller, say the researchers behind the article in Nature Geoscience. Therefore, their view is that these feedback mechanisms must be taken into account in the calculations in future climate models.

The work has formed part of iLEAPS/IGBP, the Integrated Land Ecosystem-Atmosphere Processes Study from the International Geosphere-Biosphere Programme.

For more information please contact Almut Arneth, almut.arneth@nateko.lu.se.

Ingemar Björklund | idw
Further information:
http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo905.html
http://www.vr.se

More articles from Earth Sciences:

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Sea level as a metronome of Earth's history
19.05.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>