Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Risk for New England Floods Rises with Water Tables

31.03.2011
As another spring flood season approaches in New England, a recent study by University of Massachusetts Amherst geoscientists suggests that soil moisture and the water table have been rising over the past 10 years across the region, and we may be facing a higher risk of flooding in the years ahead, due to changes in subsurface water storage over the longer term.

Hydrogeologist David Boutt, an expert in the mechanics and flow paths of subsurface water, with UMass Amherst graduate student Kaitlyn Weider, recently published in the journal Geophysical Research Letters the first instrument-based, long-term compilation and evaluation of the water table at a regional level over the last 60 years in New England. Evidence suggests that climate change is modifying the timing and nature of precipitation and altering the hydrogeologic cycle, the researchers say.

It is widely accepted that rising temperatures and the timing of rain and snowfall in New England are changing the character of the seasons, but there has been little study of how this might affect regional surface and ground water levels, Boutt notes. Variables such as streamflow, lake levels and timing of peak low and high flows are continually changing and could well be affected, he adds.

Using data from wells, stream gauges, precipitation monitors and weather-station temperatures collected between 1940 and 2010, he and Weider compiled the outlook for New England. They also show how researchers in other areas can use such information with statistical modeling and analyses to assess risk in their region.

Boutt and Weider collected ground water data from nearly 100 wells with at least 20 years of continuous monthly records in the Climate Response Network from various geologic and climatic regions of Maine, New Hampshire, Vermont, Massachusetts, Connecticut and Rhode Island. Overall, 78 percent of these sites provided at least 40 years of data.

They used precipitation and temperature data from the National Oceanic and Atmospheric Administration’s National Climatic Data Center and the U.S. Historical Climatology Network, totaling 43 temperature sites and 75 precipitation stations. They took surface water flow information from 67 stream gauges, as well.

Boutt and Weider examined New England 12-month average ground water, streamflow, precipitation and temperature for statistically significant trends and departures. They report that precipitation, streamflow and ground water levels remain relatively stable throughout their records until the last 10 years, when they observe “consistently above normal precipitation, streamflow and ground water levels.”

The analysis suggests that changes in precipitation over timescales greater than a single year can lead to a build-up of water storage in the subsurface. This excess water can be stored for many years in the sub-surface, resulting in essentially what is a memory-effect of previous wet and dry periods.

Overall, results show that all variables are producing significant increasing trends for the New England region, Boutt says. He and Weider summarize that their analysis of New England climate anomalies from 1940–2010 depicts “a strong relationship between climate variables and ground water levels displaying intriguing decadal patterns that reveal information about the sensitivity of aquifers to climate perturbations.”

David Boutt | Newswise Science News
Further information:
http://www.umass.edu

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>