Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rising temperature difference between hemispheres could dramatically shift rainfall patterns in tropics

03.04.2013
One often ignored consequence of global climate change is that the Northern Hemisphere is becoming warmer than the Southern Hemisphere, which could significantly alter tropical precipitation patterns, according to a new study by climatologists from the University of California, Berkeley, and the University of Washington, Seattle.
The tropical rain band is clearly visible as an equatorial belt of clouds cutting just below the Sahara desert. Courtesy of GEOSPACE/SCIENCE photo library.

Such a shift could increase or decrease seasonal rainfall in areas such as the Amazon, sub-Saharan Africa or East Asia, leaving some areas wetter and some drier than today.

“A key finding is a tendency to shift tropical rainfall northward, which could mean increases in monsoon weather systems in Asia or shifts of the wet season from south to north in Africa and South America,” said UC Berkeley graduate student Andrew R. Friedman, who led the analysis.

“Tropical rainfall likes the warmer hemisphere,” summed up John Chiang, UC Berkeley associate professor of geography and a member of the Berkeley Atmospheric Sciences Center. “As a result, tropical rainfall cares a lot about the temperature difference between the two hemispheres.”

Chiang and Friedman, along with University of Washington colleagues Dargan M. W. Frierson and graduate student Yen-Ting Hwang, report their findings in a paper now accepted by the Journal of Climate, a publication of the American Meteorological Society. It will appear in an upcoming issue.

Generally, rainfall patterns fall into bands at specific latitudes, such as the Intertropical Convergence Zone. The researchers say that a warmer northern hemisphere causes atmospheric overturning to weaken in the north and strengthen in the south, shifting rain bands northward.

Impact of the Clean Air Act

Even though greenhouse gas warming of Earth has been going up since the 19th century, Chiang, Friedman and their team found no significant overall upward or downward trend in interhemispheric temperature differences last century until a steady increase beginning in the 1980s.

The researchers attribute this to human emissions of aerosols, in particular sulfates – from coal-burning power plants, for example – which cooled the Northern Hemisphere and apparently counteracted the warming effect of rising greenhouse gases until the 1970 U.S. Clean Air Act led to a downward trend in sulfur emissions. The act reduced pollution and saved more than 200,000 lives and prevented some 700,000 cases of chronic bronchitis, according to 2010 figures from the Environmental Protection Agency.

“Greenhouse gases and aerosols act in opposite directions, so for much of the 20th century they essentially canceled one another out in the Northern Hemisphere,” Chiang said. “When we started cleaning up aerosols we essentially leveled off the aerosol influence and allowed the greenhouse gases to express themselves.”

The regions most affected by this shift are likely to be on the bands’ north and south edges, Frierson said.

“It really is these borderline regions that will be most affected, which, not coincidentally, are some of the most vulnerable places: areas like the Sahel where rainfall is variable from year to year and the people tend to be dependent on subsistence agriculture,” said Frierson, associate professor of atmospheric sciences. “We are making major climate changes to the planet and to expect that rainfall patterns would stay the same is very naïve.”

20th century rainfall patterns

Many discussions of climate change focus on long-term trends in the average global temperature. The UC Berkeley and University of Washington researchers went a step further to determine how the temperature difference between the two hemispheres changed over the last century and how that may have affected tropical rainfall patterns.

Using more than 100 years of data and model simulations, they compared the yearly average temperature difference between the Northern and Southern hemispheres with rainfall throughout the 20th century and noticed that abrupt changes coincided with rainfall disruptions in the equatorial tropics.

The largest was a drop of about one-quarter degree Celsius (about one-half degree Fahrenheit) in the temperature difference in the late 1960s, which coincided with a 30-year drought in the African Sahel that caused famines and increased desertification across North Africa, as well as decreases in the monsoons in East Asia and India.

“If what we see in the last century is true, even small changes in the temperature difference between the Northern and Southern hemispheres could cause measureable changes in tropical rainfall,” Chiang said.

This bodes ill for the future, he said. The team found that most computer models simulating past and future climate predict a steadily rising interhemispheric temperature difference through the end of the century. Even if humans begin to lower their greenhouse gas emissions, the models predict about a 1 degree Celsius (2° F) increase in this difference by 2099.

As global temperatures rose over the course of the 20th century (top), the temperature between the two hemispheres changed little until the 1980s, though it has been rising since. Courtesy of Andrew Friedman.

While the average temperature of the Earth is increasing as a result of dramatic increases in atmospheric greenhouse gases, primarily carbon dioxide, the Earth is not warming uniformly. In particular, the greater amount of land mass in the north warms up faster than the ocean-dominated south, Chiang said. He and his colleagues argue that climate scientists should not only focus on the rising global mean temperature, but also the regional patterns of global warming. As their study shows, the interhemispheric temperature difference has an apparent impact on atmospheric circulation and rainfall in the tropics.

“Global mean temperature is great for detecting climate change, but it is not terribly useful if you want to know what is happening to rainfall over California, for example,” Chiang said. “We think this simple index, interhemispheric temperature, is very relevant on a hemispheric and perhaps regional level. It provides a different perspective on climate change and also highlights the effect of aerosols on weather patterns.”

The research was supported by the U.S. Department of Energy and the National Science Foundation.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>