Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rising CO2 Is Causing Plants to Release Less Water to the Atmosphere

As carbon dioxide levels have risen during the last 150 years, the density of pores that allow plants to breathe has dwindled by 34 percent, restricting the amount of water vapor the plants release to the atmosphere, report scientists from Indiana University Bloomington and Utrecht University in the Netherlands in an upcoming issue of the Proceedings of the National Academy of Sciences (now online).

In a separate paper, also to be published by PNAS, many of the same scientists describe a model they devised that predicts doubling today's carbon dioxide levels will dramatically reduce the amount of water released by plants.

The scientists gathered their data from a diversity of plant species in Florida, including living individuals as well as samples extracted from herbarium collections and peat formations 100 to 150 years old.

"The increase in carbon dioxide by about 100 parts per million has had a profound effect on the number of stomata and, to a lesser extent, the size of the stomata," said Research Scientist in Biology and Professor Emeritus in Geology David Dilcher, the two papers' sole American coauthor. "Our analysis of that structural change shows there's been a huge reduction in the release of water to the atmosphere."

Most plants use a pore-like structure called stomata (singular: stoma) on the undersides of leaves to absorb carbon dioxide from the air. The carbon dioxide is used to build sugars, which can be used by the plant as energy or for incorporation into the plants' fibrous cell walls. Stomata also allow plants to "transpire" water, or release water to the atmosphere. Transpiration helps drive the absorption of water at the roots, and also cools the plants in the same way sweating cools mammals.

If there are fewer stomata, or the stomata are closed more of the day, gas exchange will be limited -- transpiration included.

"The carbon cycle is important, but so is the water cycle," Dilcher said. "If transpiration decreases, there may be more moisture in the ground at first, but if there's less rainfall that may mean there's less moisture in ground eventually. This is part of the hyrdrogeologic cycle. Land plants are a crucially important part of it."

Dilcher also said less transpiration may mean the shade of an old oak tree may not be as cool of a respite as it used to be.

"When plants transpire they cool," he said. "So the air around the plants that are transpirating less could be a bit warmer than they have been. But the hydrogeologic cycle is complex. It's hard to predict how changing one thing will affect other aspects. We would have to see how these things play out."

While it is well known that long-lived plants can adjust their number of stomata each season depending on growing conditions, little is known about the long-term structural changes in stomata number or size over periods of decades or centuries.

"Our first paper shows connection between temperature, transpiration, and stomata density," Dilcher said. "The second paper really is about applying what we know to the future."

That model suggests that a doubling of today's carbon dioxide levels -- from 390 parts per million to 800 ppm -- will halve the amount of water lost to the air, concluding in the second paper that "plant adaptation to rising CO2 is currently altering the hydrological cycle and climate and will continue to do so throughout this century."

Dilcher and his Dutch colleagues say that a drier atmosphere could mean less rainfall and therefore less movement of water through Florida's watersheds.

The Florida Everglades depend heavily on the slow, steady flow of groundwater from upstate. The siphoning of that water to development has raised questions about the future of the Everglades as a national resource.

Dilcher's Dutch coauthors for the two papers were Emmy Lammertsma, Hugo de Boer, Stefan Dekker, Andre Lotter, Friederike Wagner-Cremer, and Martin Wassen, all of Utrecht University in Utrecht, Netherlands. The project received support from Utrecht University's High Potential research program.

To speak with Dilcher, please contact David Bricker, University Communications, at 812-856-9035 or To speak with any of the Dutch coauthors, please contact Emmy Lammertsma, Utrecht University, at 31 (0) 64 137 6175 or

"Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation" Proceedings of the National Academy of Sciences (online), vol./iss. TBD

"Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2" Proceedings of the National Academy of Sciences (online), vol./iss. TBD

David Bricker | Newswise Science News
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>