Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rising carbon dioxide levels at end of last ice age not tied to Pacific Ocean, as had been suspected

04.10.2011
After the last ice age peaked about 18,000 years ago, levels of atmospheric carbon dioxide rose about 30 percent. Scientists believe that the additional carbon dioxide—a heat-trapping greenhouse gas—played a key role in warming the planet and melting the continental ice sheets. They have long hypothesized that the source of the gas was the deep ocean.

But a new study by a University of Michigan paleoclimatologist and two colleagues suggests that the deep ocean was not an important source of carbon during glacial times. The finding will force researchers to reassess their ideas about the fundamental mechanisms that regulate atmospheric carbon dioxide over long time scales.

"We're going back to the drawing board. It's certainly fair to say that we need to have some other working hypotheses at this point," said U-M paleoclimatologist David Lund, lead author of a paper in this week's edition of the journal Nature Geoscience.

"If we can improve our understanding of the carbon cycle in the past, we will be better positioned moving forward as CO2 levels rise due to anthropogenic causes," said Lund, an assistant professor in the U-M Department of Earth and Environmental Sciences. Lund's co-authors are Alan Mix of Oregon State University and John Southon of the University of California, Irvine.

The study, which involved radiocarbon-dating of sediments from a core collected at a deep-ocean site (water depth 8,943 feet) off the coast of southwestern Oregon, was supported by the National Science Foundation and the University of Michigan.

The work involved radiocarbon dating dozens of sediment samples that contained microscopic shells created by plankton. The samples were collected from various locations in the core, spanning the period from 8,000 to 22,000 years ago. Over thousands of years, ocean water circulates from the surface to the bottom, then back to the surface. The radiocarbon results revealed the basin's circulation or "ventilation" rate, the amount of time that had passed since the various deep-water samples were last in contact with the atmosphere.

The scientists expected to find that the ventilation rate in the basin slowed during glacial times, allowing carbon dioxide to accumulate in the abyss and depleting atmospheric levels of the gas.

Surprisingly, they found that the ventilation rate during glacial times was roughly the same as it is today, suggesting that the Pacific was not an important reservoir of carbon during glacial times.

"Frankly, we're kind of baffled by the whole thing," said Oregon State University paleo-oceanographer Alan Mix, one of the co-authors. "The North Pacific was such an obvious source for the carbon, but it just doesn't match up."

"At least we've shown where the carbon wasn't," Mix said. "Now we just have to find where it was."

Jim Erickson | EurekAlert!
Further information:
http://www.umich.edu

More articles from Earth Sciences:

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>