Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ridges on Mars suggest ancient flowing water

Ridges in impact craters on Mars appear to be fossils of cracks in the Martian surface, formed by minerals deposited by flowing water. Water flowing beneath the surface suggests life may once have been possible on Mars.

Networks of narrow ridges found in impact craters on Mars appear to be the fossilized remnants of underground cracks through which water once flowed, according to a new analysis by researchers from Brown University.

Fossilized hydrology
A 3-D image of an impact crater in the Nilosyrtis area on the Martian surface shows long pipe-like ridges, fossilized evidence of ancient subsurface water flow. Credit: NASA Mars Reconnaissance Orbiter

The study, in press in the journal Geophysical Research Letters, bolsters the idea that the subsurface environment on Mars once had an active hydrology and could be a good place to search for evidence of past life. The research was conducted by Lee Saper, a recent Brown graduate, with Jack Mustard, professor of geological sciences.

The ridges, many of them hundreds of meters in length and a few meters wide, had been noted in previous research, but how they had formed was not known. Saper and Mustard thought they might once have been faults and fractures that formed underground when impact events rattled the planet’s crust. Water, if present in the subsurface, would have circulated through the cracks, slowly filling them in with mineral deposits, which would have been harder than the surrounding rocks. As those surrounding rocks eroded away over millions of years, the seams of mineral-hardened material would remain in place, forming the ridges seen today.

Mineral deposits mark subsurface water flow

A photo taken by the Mars Reconnaissance Orbiter shows ridges formed by fossilized subsurface water flow. Orientation of the ridges, mapped by researchers, is consistent with fractures formed by impact events. Credit: NASA and Mustard Lab/Brown UniversityTo test their hypothesis, Saper and Mustard mapped over 4,000 ridges in two crater-pocked regions on Mars, Nili Fossae and Nilosyrtis. Using high-resolution images from NASA’s Mars Reconnaissance Orbiter, the researchers noted the orientations of the ridges and composition of the surrounding rocks.

The orientation data is consistent with the idea that the ridges started out as fractures formed by impact events. A competing hypothesis suggests that these structures may have been sheets of volcanic magma intruding into the surrounding rock, but that doesn’t appear to be the case. At Nili Fossae, the orientations are similar to the alignments of large faults related to a mega-scale impact. At Nilosyrtis, where the impact events were smaller in scale, the ridge orientations are associated with each of the small craters in which they were found. “This suggests that fracture formation resulted from the energy of localized impact events and are not associated with regional-scale volcanism,” Saper said.

Importantly, Saper and Mustard also found that the ridges exist exclusively in areas where the surrounding rock is rich in iron-magnesium clay, a mineral considered to be a telltale sign that water had once been present in the rocks.

“The association with these hydrated materials suggests there was a water source available,” Saper said. “That water would have flowed along the path of least resistance, which in this case would have been these fracture conduits.”

As that water flowed, dissolved minerals would have been slowly deposited in the conduits, in much the same way mineral deposits can build up and eventually clog drain pipes. That mineralized material would have been more resistant to erosion than the surrounding rock. And indeed, Saper and Mustard found that these ridges were only found in areas that were heavily eroded, consistent with the notion that these are ancient structures revealed as the weaker surrounding rocks were slowly peeled away by wind.

Taken together, the results suggest the ancient Martian subsurface had flowing water and may have been a habitable environment.

“This gives us a point of observation to say there was enough fracturing and fluid flow in the crust to sustain at least a regionally viable subsurface hydrology,” Saper said. “The overarching theme of NASA’s planetary exploration has been to follow the water. So if in fact these fractures that turned into these ridges were flowing with hydrothermal fluid, they could have been a viable biosphere.”

Saper hopes that the Curiosity rover, currently making its way across its Gale Crater landing site, might be able to shed more light on these types of structures.

“In the site at Gale Crater, there are thought to be mineralized fractures that the rover will go up and touch,” Saper said. “These are very small and may not be exactly the same kind of feature we studied, but we’ll have the opportunity to crush them up and do chemical analysis on them. That could either bolster our hypothesis or tell us we need to explore other possibilities.”

The research was supported by a grant from NASA’s Rhode Island Space Grant Consortium and through a NASA subcontract with the Applied Physics Lab at Johns Hopkins University.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Kevin Stacey | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Field widens for environments, microbes that produce toxic form of mercury
12.10.2015 | DOE/Oak Ridge National Laboratory

nachricht Unexpected information about Earth's climate history from Yellow River sediment
09.10.2015 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Secure data transfer thanks to a single photon

Physicists of TU Berlin and mathematicians of MATHEON are so successful that even the prestigious journal “Nature Communications” reported on their project.

Security in data transfer is an important issue, and not only since the NSA scandal. Sometimes, however, the need for speed conflicts to a certain degree with...

Im Focus: A Light Touch May Help Animals and Robots Move on Sand and Snow

Having a light touch can make a hefty difference in how well animals and robots move across challenging granular surfaces such as snow, sand and leaf litter. Research reported October 9 in the journal Bioinspiration & Biomimetics shows how the design of appendages – whether legs or wheels – affects the ability of both robots and animals to cross weak and flowing surfaces.

Using an air fluidized bed trackway filled with poppy seeds or glass spheres, researchers at the Georgia Institute of Technology systematically varied the...

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

New Oregon approach for 'nanohoops' could energize future devices

13.10.2015 | Life Sciences

Supercoiled DNA is far more dynamic than the 'Watson-Crick' double helix

13.10.2015 | Life Sciences

Breast cancer drug beats superbug

13.10.2015 | Health and Medicine

More VideoLinks >>>