Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rich ore deposits linked to ancient atmosphere

23.11.2009
Much of our planet's mineral wealth was deposited billions of years ago when Earth's chemical cycles were different from today's.

Using geochemical clues from rocks nearly 3 billion years old, a group of scientists including Andrey Bekker and Doug Rumble from the Carnegie Institution have made the surprising discovery that the creation of economically important nickel ore deposits was linked to sulfur in the ancient oxygen-poor atmosphere.

These ancient ores -- specifically iron-nickel sulfide deposits -- yield 10% of the world's annual nickel production. They formed for the most part between two and three billion years ago when hot magmas erupted on the ocean floor. Yet scientists have puzzled over the origin of the rich deposits. The ore minerals require sulfur to form, but neither seawater nor the magmas hosting the ores were thought to be rich enough in sulfur for this to happen.

"These nickel deposits have sulfur in them arising from an atmospheric cycle in ancient times. The isotopic signal is of an anoxic atmosphere," says Rumble of Carnegie's Geophysical Laboratory, a co-author of the paper appearing in the November 20 issue of Science.

Rumble, with lead author Andrey Bekker (formerly Carnegie Fellow and now at the University of Manitoba), and four other colleagues used advanced geochemical techniques to analyze rock samples from major ore deposits in Australia and Canada. They found that to help produce the ancient deposits, sulfur atoms made a complicated journey from volcanic eruptions, to the atmosphere, to seawater, to hot springs on the ocean floor, and finally to molten, ore-producing magmas.

The key evidence came from a form of sulfur known as sulfur-33, an isotope in which atoms contain one more neutron than "normal" sulfur (sulfur-32). Both isotopes act the same in most chemical reactions, but reactions in the atmosphere in which sulfur dioxide gas molecules are split by ultraviolet light (UV) rays cause the isotopes to be sorted or "fractionated" into different reaction products, creating isotopic anomalies.

"If there is too much oxygen in the atmosphere then not enough UV gets through and these reactions can't happen," says Rumble. "So if you find these sulfur isotope anomalies in rocks of a certain age, you have information about the oxygen level in the atmosphere."

By linking the rich nickel ores with the ancient atmosphere, the anomalies in the rock samples also answer the long-standing question regarding the source of the sulfur in the ore minerals. Knowing this will help geologists track down new ore deposits, says Rumble, because the presence of sulfur and other chemical factors determine whether or not a deposit will form.

"Ore deposits are a tiny fraction of a percent of the Earth's surface, yet economically they are incredibly important. Modern society cannot exist without specialized metals and alloys," he says. "But it's all a matter of local geological circumstance whether you have a bonanza -- or a bust."

The Carnegie Institution (www.CIW.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Douglas Rumble | EurekAlert!
Further information:
http://www.ciw.edu

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>