Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice-led study offers new answer to why Earth's atmosphere became oxygenated

17.05.2016

Oxygen atmosphere recipe = tectonics + continents + life

Earth scientists from Rice University, Yale University and the University of Tokyo are offering a new answer to the long-standing question of how our planet acquired its oxygenated atmosphere.


This is a view of Earth's atmosphere taken from the International Space Station in 2003.

Photo courtesy of ISS Expedition 7 Crew, EOL, NASA

Based on a new model that draws from research in diverse fields including petrology, geodynamics, volcanology and geochemistry, the team's findings were published online this week in Nature Geoscience. They suggest that the rise of oxygen in Earth's atmosphere was an inevitable consequence of the formation of continents in the presence of life and plate tectonics.

"It's really a very simple idea, but fully understanding it requires a good bit of background about how the Earth works," said study lead author Cin-Ty Lee, professor of Earth science at Rice. "The analogy I most often use is the leaky bathtub. The level of water in a bathtub is controlled by the rate of water flowing in through the faucet and the efficiency by which water leaks out through the drain. Plants and certain types of bacteria produce oxygen as a byproduct of photosynthesis. This oxygen production is balanced by the sink: reaction of oxygen with iron and sulfur in the Earth's crust and by back-reaction with organic carbon. For example, we breathe in oxygen and exhale carbon dioxide, essentially removing oxygen from the atmosphere. In short, the story of oxygen in our atmosphere comes down to understanding the sources and sinks, but the 3-billion-year narrative of how this actually unfolded is more complex."

Lee co-authored the study with Laurence Yeung and Adrian Lenardic, both of Rice, and with Yale's Ryan McKenzie and the University of Tokyo's Yusuke Yokoyama. The authors' explanations are based on a new model that suggests how atmospheric oxygen was added to Earth's atmosphere at two key times: one about 2 billion years ago and another about 600 million years ago.

Today, some 20 percent of Earth's atmosphere is free molecular oxygen, or O2. Free oxygen is not bound to another element, as are the oxygen atoms in other atmospheric gases like carbon dioxide and sulfur dioxide. For much of Earth's 4.5-billion-year history, free oxygen was all but nonexistent in the atmosphere.

"It was not missing because it is rare," Lee said. "Oxygen is actually one of the most abundant elements on rocky planets like Mars, Venus and Earth. However, it is one of the most chemically reactive elements. It forms strong chemical bonds with many other elements, and as a result, it tends to remain locked away in oxides that are forever entombed in the bowels of the planet -- in the form of rocks. In this sense, Earth is no exception to the other planets; almost all of Earth's oxygen still remains locked away in its deep rocky interior."

Lee and colleagues showed that around 2.5 billion years ago, the composition of Earth's continental crust changed fundamentally. Lee said the period, which coincided with the first rise in atmospheric oxygen, was also marked by the appearance of abundant mineral grains known as zircons.

"The presence of zircons is telling," he said. "Zircons crystallize out of molten rocks with special compositions, and their appearance signifies a profound change from silica-poor to silica-rich volcanism. The relevance to atmospheric composition is that silica-rich rocks have far less iron and sulfur than silica-poor rocks, and iron and sulfur react with oxygen and form a sink for oxygen.

"Based on this, we believe the first rise in oxygen may have been due to a substantial reduction in the efficiency of the oxygen sink," Lee said. "In the bathtub analogy, this is equivalent to partially plugging the drain."

Lee said the study suggests that the second rise in atmospheric oxygen was related to a change in production -- analogous to turning up the flow from the faucet.

"The bathtub analogy is simple and elegant, but there's an added complication that must be taken into account," he said. "That is because oxygen production is ultimately tied to the global carbon cycle -- the cycling of carbon between the Earth, the biosphere, the atmosphere and oceans."

Lee said the model showed that Earth's carbon cycle has never been at a steady state because carbon slowly leaks out as carbon dioxide from Earth's deep interior to the surface through volcanic activity. Carbon dioxide is one of the key ingredients for photosynthesis.

"On long, geologic timescales, carbon is removed from the atmosphere by the production of condensed forms of carbon, such as organic carbon and minerals called carbonate," he said. "For most of Earth's history, most of this carbon has been deposited not in the deep ocean but rather on the margins of continents. The implications are profound because carbon deposited on continents does not return to Earth's deep interior. Instead, it amplifies carbon inputs into the atmosphere when the continents are subsequently perturbed by volcanism."

Lee said the team's model showed that volcanic activity and other geologic inputs of carbon into the atmosphere may have increased with time, and because oxygen production is tied to carbon production, oxygen production also must increase. The model showed that the second rise in atmospheric oxygen had to occur late in Earth's history.

"Exactly when is model-dependent, but what is clear is that the formation of continental crust naturally leads to two rises in atmospheric oxygen, just as we see in the fossil record," Lee said.

Exactly what caused the composition of the crust to change during the first oxygenation event remains a mystery, but Lee said the team believes it may have been related to the onset of plate tectonics, where the Earth's surface, for the first time, became mobile enough to sink back down into Earth's deep interior.

Lee said the team's new model is not without controversy. For example, the model predicts that production of carbon dioxide must increase with time, a finding that goes against the conventional wisdom that carbon fluxes and atmospheric carbon dioxide levels have steadily decreased over the last 4 billion years.

"The change in flux described by our model happens over extremely long time periods, and it would be a mistake to think that these processes that are bringing about any of the atmospheric changes are occurring due to anthropomorphic climate change," he said. "However, our work does suggest that Earth scientists and astrobiologists may need to revisit what we think we know about Earth's early history."

###

This work is the result of an ongoing study of the global carbon cycle funded by the National Science Foundation and administered by Rice University.

Related geochemical research from Rice:

Going deep to study long-term climate evolution -- Oct. 31, 2013 http://news.rice.edu/2013/10/31/going-deep-to-study-long-term-climate-evolution/

Volcano location could be greenhouse-icehouse key -- Feb. 6, 2013 http://news.rice.edu/2013/02/06/volcano-location-could-be-greenhouse-icehouse-key/

Copper chains: Study reveals Earth's deep-seated hold on copper -- April 5, 2012 http://news.rice.edu/2012/04/05/copper-chains-study-reveals-earths-deep-seated-hold-on-copper/

Rust reveals Earth's secrets -- Dec. 2, 2010 http://news.rice.edu/2010/12/02/rice-researchers-track-zinc-iron-in-magma-to-see-how-oxygen-travels-inside-planet/

Continents' loss to oceans boosts staying power -- April 1, 2008 http://news.rice.edu/2008/04/01/continents-loss-to-oceans-boosts-staying-power-2/

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations on Twitter @RiceUNews.

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

David Ruth
david@rice.edu
713-348-6327

 @RiceUNews

http://news.rice.edu 

David Ruth | EurekAlert!

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>