Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rewriting the history of volcanic forcing during the past 2,000 years

07.07.2014

A year-by-year record of volcanic eruptions from a comprehensive Antarctic ice core array

A team of scientists led by Michael Sigl and Joe McConnell of Nevada's Desert Research Institute (DRI) has completed the most accurate and precise reconstruction to date of historic volcanic sulfate emissions in the Southern Hemisphere.

Antarctic Ice Core Sample Sites

Locations of Antarctic ice core sites used for volcanic sulfate aerosol deposition reconstruction (right); a DRI scientist examines a freshly drilled ice core in the field before ice cores are analyzed in DRI's ultra-trace ice core analytical laboratory.

Credit: M. Sigl

Ice Core Analysis

An ice core section is simultaneously analyzed for a variety of elements and chemical species in DRI's ultra-trace ice core laboratory while slowly melting the ice on a heated melter plate

Credit: Joseph McConnell

The new record, described in a manuscript published today in the online edition of Nature Climate Change, is derived from a large number of individual ice cores collected at various locations across Antarctica and is the first annually resolved record extending through the Common Era (the last 2,000 years of human history).

"This record provides the basis for a dramatic improvement in existing reconstructions of volcanic emissions during recent centuries and millennia," said the report's lead author Michael Sigl, a postdoctoral fellow and specialist in DRI's unique ultra-trace ice core analytical laboratory, located on the Institute's campus in Reno, Nevada.

These reconstructions are critical to accurate model simulations used to assess past natural and anthropogenic climate forcing. Such model simulations underpin environmental policy decisions including those aimed at regulating greenhouse gas and aerosol emissions to mitigate projected global warming.

Powerful volcanic eruptions are one of the most significant causes of climate variability in the past because of the large amounts of sulfur dioxide they emit, leading to formation of microscopic particles known as volcanic sulfate aerosols. These aerosols reflect more of the sun's radiation back to space, cooling the Earth. Past volcanic events are measured through sulfate deposition records found in ice cores and have been linked to short-term global and regional cooling.

This effort brought together the most extensive array of ice core sulfate data in the world, including the West Antarctic Ice Sheet (WAIS) Divide ice core – arguably the most detailed record of volcanic sulfate in the Southern Hemisphere. In total, the study incorporated 26 precisely synchronized ice core records collected in an array of 19 sites from across Antarctica.

"This work is the culmination of more than a decade of collaborative ice core collection and analysis in our lab here at DRI," said Joe McConnell, a DRI research professor who developed the continuous-flow analysis system used to analyze the ice cores.

McConnell, a member of several research teams that collected the cores (including the 2007-2009 Norwegian-American Scientific Traverse of East Antarctica and the WAIS Divide project that reached a depth of 3,405 meters in 2011), added, "The new record identifies 116 individual volcanic events during the last 2000 years."

"Our new record completes the period from years 1 to 500 AD, for which there were no reconstructions previously, and significantly improves the record for years 500 to 1500 AD," Sigl added. This new record also builds on DRI's previous work as part of the international Past Global Changes (PAGES) effort to help reconstruct an accurate 2,000-year-long global temperature for individual continents.

This study involved collaborating researchers from the United States, Japan, Germany, Norway, Australia, and Italy. International collaborators contributed ice core samples for analysis at DRI as well as ice core measurements and climate modeling.

According to Yuko Motizuki from RIKEN (Japan's largest comprehensive research institution), "The collaboration between DRI, National Institute of Polar Research (NIPR), and RIKEN just started in the last year, and we were very happy to be able to use the two newly obtained ice core records taken from Dome Fuji, where the volcanic signals are clearly visible. This is because precipitation on the site mainly contains stratospheric components." Dr. Motizuki analyzed the samples collected by the Japanese Antarctic Research Expedition.

Simulations of volcanic sulfate transport performed with a coupled aerosol-climate model were compared to the ice core observations and used to investigate spatial patterns of sulfate deposition to Antarctica.

"Both observations and model results show that not all eruptions lead to the same spatial pattern of sulfate deposition," said Matthew Toohey from the German institute GEOMAR Helmholtz Centre for Ocean Research Kiel. He added, "Spatial variability in sulfate deposition means that the accuracy of volcanic sulfate reconstructions depends strongly on having a sufficient number of ice core records from as many different regions of Antarctica as possible."

With such an accurately synchronized and robust array, Sigl and his colleagues were able to revise reconstructions of past volcanic aerosol loading that are widely used today in climate model simulations. Most notably, the research found that the two largest volcanic eruptions in recent Earth history (Samalas in 1257 and Kuwae in 1458) deposited 30 to 35 percent less sulfate in Antarctica, suggesting that these events had a weaker cooling effect on global climate than previously thought.

This research was funded through the U.S. National Science Foundation grants 0538416, 0538427, 0839093, 0632031, and 0739780; the Funding Program for Next Generation World-Leading Researchers (NEXT Program, Grant Number GR098) supported by the Cabinet Office, Government of Japan and the Japan Society for the Promotion of Science; and the Federal Ministry for Education and Research in Germany (BMBF) through the research program 'MiKlip.'

About the Desert Research Institute: DRI, the nonprofit research campus of the Nevada System of Higher Education, strives to be the world leader in environmental sciences through the application of knowledge and technologies to improve people's lives throughout Nevada and the world. All DRI news releases are available at http://news.dri.edu/.

Justin Broglio | Eurek Alert!

Further reports about: Antarctica DRI Earth RIKEN eruptions observations sulfate volcanic volcanic emissions

More articles from Earth Sciences:

nachricht Marine carbon sinking rates confirm importance of polar oceans
26.07.2016 | University of Washington

nachricht Oceans may be large, overlooked source of hydrogen gas
21.07.2016 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New movie screen allows for glasses-free 3-D

26.07.2016 | Information Technology

Scientists develop painless and inexpensive microneedle system to monitor drugs

26.07.2016 | Health and Medicine

Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'

26.07.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>