Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reusable materials from metallurgical plant dumps reduces imports of raw material

13.09.2013
Metallurgical plant dumps harbor important raw materials such as metals and minerals that often have not been used yet.

The reason: comprehensive data regarding the exact reusable material potential of these dumps is missing. To close this gap, Fraunhofer UMSICHT is coordinating the "REStrateGIS" project. The objective is to develop a multi-scalar resource register for metallurgical plant dumps.


Metallurgical plant dumps are anthropogenic deposits for minerals and metals.
Picture: Fraunhofer UMSICHT

Germany is, to a high degree, dependent on imports of raw materials, in particular for high-tech products. There are still a lot of not yet utilized anthropogenic deposits for metals and minerals. This includes metallurgical plant dumps for residues such as dusts, sludges, non-utilised slags and other metallurgical debris. These are all too rarely utilised because for one, the basic data regarding their specifically contained reusable material potential are missing.

For another, new concepts for recovery of the reusable materials are necessary. Here is where the collaborative project "REStrateGIS", sponsored by the German Federal Ministry of Education and Research (BMBF - Bundesministerium für Bildung und Forschung) program"r³: Innovative Technologies for Resource Efficiency – Strategic Metals and Minerals", comes into play. Over the course of three years, the work will be performed in an interdisciplinary and transdisciplinary approach by four partners (Halle-Wittenberg University, EFTAS GmbH, FEhS-Institute e.V. and UMSICHT) and supported by a Project Advisory Board (PAB) – consisting of representatives from industry, politics, science and associations.

Detecting dumps via remote sensing data

To close the data gaps regarding reusable material potentials in dumps via the multi-scalar register, the team is prototypically reviewing archive data and applying methods of remote sensing as well as innovative laboratory methods.

The multi-scalar register provides mapping at three spatial dimensions. The spatial and content resolution as well as depth of detail increases from level to level. The top level is comprised of the concept design and development of a Germany-wide overview register that is made available online. In the register, data from various sources regarding existing dumps in Germany is presented in an overview style. The register contains a spatial component – the dumps are presented as objects within an interactive map application.

In addition to the research at government agency archives, remote sensing is also a tool of choice. Here, a methodology is being developed - applied in two test regions / to detect dumps by means of remote sensing data. On the second level, the resolution is increased. In a region with a high density of dumps, information regarding location, size and areas of origin of the deposited materials is modeled in a geographical information system (GIS).

The third level, with the highest spatial resolution, describes a dump body in detail. For this, a 3D image of the dump is created with a GIS.

New processes for reusable material recovery

Furthermore, concepts for the recovery of reusable materials are developed based on chemical and pyro-metallurgical laboratory tests which then, in combination with an obstacle analysis are incorporated into the utilisation strategies.

In addition, the researchers test the dump's deposited material. These tests also include methods of terrestrial reflection spectrometry, in addition to laboratory analyses. The tests are rounded out by an airborne hyper-spectral flyover. The results of the tests and the flyover are combined with the 3D model of the dump in the GIS. The recorded data and the derived information constitute the foundation for the development of methods for the recovery of reusable materials.

Iris Kumpmann | Fraunhofer-Institut
Further information:
http://www.umsicht.fraunhofer.de/

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>