Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reusable materials from metallurgical plant dumps reduces imports of raw material

13.09.2013
Metallurgical plant dumps harbor important raw materials such as metals and minerals that often have not been used yet.

The reason: comprehensive data regarding the exact reusable material potential of these dumps is missing. To close this gap, Fraunhofer UMSICHT is coordinating the "REStrateGIS" project. The objective is to develop a multi-scalar resource register for metallurgical plant dumps.


Metallurgical plant dumps are anthropogenic deposits for minerals and metals.
Picture: Fraunhofer UMSICHT

Germany is, to a high degree, dependent on imports of raw materials, in particular for high-tech products. There are still a lot of not yet utilized anthropogenic deposits for metals and minerals. This includes metallurgical plant dumps for residues such as dusts, sludges, non-utilised slags and other metallurgical debris. These are all too rarely utilised because for one, the basic data regarding their specifically contained reusable material potential are missing.

For another, new concepts for recovery of the reusable materials are necessary. Here is where the collaborative project "REStrateGIS", sponsored by the German Federal Ministry of Education and Research (BMBF - Bundesministerium für Bildung und Forschung) program"r³: Innovative Technologies for Resource Efficiency – Strategic Metals and Minerals", comes into play. Over the course of three years, the work will be performed in an interdisciplinary and transdisciplinary approach by four partners (Halle-Wittenberg University, EFTAS GmbH, FEhS-Institute e.V. and UMSICHT) and supported by a Project Advisory Board (PAB) – consisting of representatives from industry, politics, science and associations.

Detecting dumps via remote sensing data

To close the data gaps regarding reusable material potentials in dumps via the multi-scalar register, the team is prototypically reviewing archive data and applying methods of remote sensing as well as innovative laboratory methods.

The multi-scalar register provides mapping at three spatial dimensions. The spatial and content resolution as well as depth of detail increases from level to level. The top level is comprised of the concept design and development of a Germany-wide overview register that is made available online. In the register, data from various sources regarding existing dumps in Germany is presented in an overview style. The register contains a spatial component – the dumps are presented as objects within an interactive map application.

In addition to the research at government agency archives, remote sensing is also a tool of choice. Here, a methodology is being developed - applied in two test regions / to detect dumps by means of remote sensing data. On the second level, the resolution is increased. In a region with a high density of dumps, information regarding location, size and areas of origin of the deposited materials is modeled in a geographical information system (GIS).

The third level, with the highest spatial resolution, describes a dump body in detail. For this, a 3D image of the dump is created with a GIS.

New processes for reusable material recovery

Furthermore, concepts for the recovery of reusable materials are developed based on chemical and pyro-metallurgical laboratory tests which then, in combination with an obstacle analysis are incorporated into the utilisation strategies.

In addition, the researchers test the dump's deposited material. These tests also include methods of terrestrial reflection spectrometry, in addition to laboratory analyses. The tests are rounded out by an airborne hyper-spectral flyover. The results of the tests and the flyover are combined with the 3D model of the dump in the GIS. The recorded data and the derived information constitute the foundation for the development of methods for the recovery of reusable materials.

Iris Kumpmann | Fraunhofer-Institut
Further information:
http://www.umsicht.fraunhofer.de/

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>