Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rethinking induced seismicity

31.03.2016

New study suggests fracking itself, not just wastewater injection, may cause earthquakes

A survey of a major oil and natural gas-producing region in Western Canada suggests there may be a link between induced earthquakes and hydraulic fracturing, not just wastewater injection, according to a new report out this week in the journal Seismological Research Letters.


Western Canadian Sedimentary Basin (outlined in black) is on a geological map of Canada.

Credit: QYD

Hydraulic fracturing is the process of drilling and injecting fluid into the ground at a high pressure in order to fracture shale rocks to release the oil and natural gas trapped inside. That release brings the oil and natural gas up to the surface and with it comes water, chemical additives and other substances picked up during the injection process. All that fluid has to be disposed of and, often, it's reinjected underground into what's referred to as a wastewater injection well.

Across the central US, most notably in Oklahoma, it's that second part--the wastewater injection wells-- that have been linked to something called induced seismicity. For years, conventional wisdom has held that these man-made tremors, which can have magnitudes of 3.8 to 4, are due to wastewater injection.

But research done by CIRES Fellow Kristy Tiampo and a team of scientists from Canada has found that while induced seismicity in Western Canada can be caused by these injection wells, a significant percentage are caused by the hydraulic fracturing itself. "These are the largest hydraulic fracturing-induced events ever seen in Western Canada," says Tiampo. "But we're not yet sure if it's because we're looking harder, or if it's due to the geology of the region."

Additionally, it's been thought that the more fluid you put into the ground, the larger the resulting seismic event would be. But the team's findings in Canada are disproving that trend as well. "You can get a big event from a small amount of fluid," says Tiampo. This suggests that the size of the available fault surface that is close to its breaking point may control the maximum magnitude. As oil and gas activities continue and the area affected becomes larger, it is likely that more such earthquakes will occur, at least in some areas.

What she and the rest of the team don't yet know is if these observations are true for just this part of Canada or if they hold for all of North America. Tiampo will be looking specifically at past events in the United States to better understand why there haven't been any hydraulic fracturing-induced events and examine the possibility that there may have been some that were overlooked.

Their findings might be of interest to the oil and gas industry. The nature of the hazard from hydraulic fracturing is different that that from wastewater injection. Wastewater injection involves lateral diffusion over a broad area and long time frame, while hydraulic fracture operations employ high injection rates in a confined area, resulting in transient risks that could be compounded by multiple operations. "The safety protocols for disposal and hydraulic fracturing are based on the assumption that wastewater injection wells are responsible for larger seismic events," explains Tiampo. "But if it turns out that hydraulic fracturing itself causes these large events, that has to be accounted for in dealing with potential hazards."

CIRES is a partnership of NOAA and CU-Boulder.

Kristy Tiampo | EurekAlert!

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>