Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rethinking early atmospheric oxygen

25.04.2013
Model results from a UC Riverside research team open the possibility of a more dynamic biological oxygen cycle on the early Earth than previously supposed

A research team of biogeochemists at the University of California, Riverside has provided a new view on the relationship between the earliest accumulation of oxygen in the atmosphere, arguably the most important biological event in Earth history, and its relationship to the sulfur cycle.


This photo shows researchers doing field sampling of a pyrite-rich black shale outcrop in China. The weathering of such sediments, which contain sulfur originally buried from the ocean, transfers sulfur isotope signals to the ocean to be buried again in marine sediments.

Credit: Chu Research Group, Institute of Geology and Geophysics, Chinese Academy of Sciences.

A general consensus exists that appreciable oxygen first accumulated in Earth's atmosphere around 2.4 to 2.3 billion years ago. Though this paradigm is built upon a wide range of geological and geochemical observations, the famous "smoking gun" for what has come to be known as the "Great Oxidation Event" (GOE) comes from the disappearance of anomalous fractionations in rare sulfur isotopes.

"These isotope fractionations, often referred to as 'mass-independent fractionations,' or 'MIF' signals, require both the destruction of sulfur dioxide by ultraviolet energy from the sun in an atmosphere without ozone and very low atmospheric oxygen levels in order to be transported and deposited in marine sediments," said Christopher T. Reinhard, the lead author of the research paper and a former UC Riverside graduate student. "As a result, their presence in ancient rocks is interpreted to reflect vanishingly low atmospheric oxygen levels continuously for the first ~2 billion years of Earth's history."

However, diverse types of data are emerging that point to the presence of atmospheric oxygen, and, by inference, the early emergence of oxygenic photosynthesis hundreds of millions of years before these MIF signals disappear from the rock record. These observations motivated Reinhard and colleagues to explore the possible conditions under which inherited MIF signatures may have persisted in the rock record long after oxygen accumulated in the atmosphere.

Using a simple quantitative model describing how sulfur and its isotopes cycle through the Earth's crust, the researchers discovered that under certain conditions these MIF signatures can persist within the ocean and marine sediments long after O2 increases in the atmosphere. Simply put, the weathering of rocks on the continents can transfer the MIF signal to the oceans and their sediments long after production of this fingerprint has ceased in an oxygenated atmosphere.

"This lag would blur our ability to date the timing of the GOE and would allow for dynamic rising and falling oxygen levels during a protracted transition from an atmosphere without oxygen to one rich in this life-giving gas," Reinhard said.

Study results appear in Nature's advanced online publication on April 24.

Reinhard explained that once MIF signals formed in an oxygen-poor atmosphere are captured in pyrite and other minerals in sedimentary rocks, they are recycled when those rocks are later uplifted as mountain ranges and the pyrite is oxidized.

"Under certain conditions, this will create a sort of 'memory effect' of these MIF signatures, providing a decoupling in time between the burial of MIF in sediments and oxygen accumulation at Earth's surface," he said.

According to the researchers, the key here is burying a distinct MIF signal in deep sea sediments, which are then subducted and removed from Earth's surface.

"This would create a complementary signal in minerals that are weathered and delivered to the oceans, something that we actually see evidence of in the rock record," said Noah Planavsky, the second author of the research paper and a former UC Riverside graduate student now at Caltech. "This signal can then be perpetuated through time without the need to generate it within the atmosphere contemporaneously."

Reinhard, now a postdoctoral fellow at Caltech and soon to be an assistant professor at Georgia Institute of Technology, explained that although the researchers' new model provides a plausible mechanism for reconciling recent conflicting data, this can only occur when certain key conditions are met — and these conditions are likely to have changed through time during Earth's long early history.

"There is obviously much further work to do, but we hope that our model is one step toward a more integrated view of how Earth's crust, mantle and atmosphere interact in the global sulfur cycle," he said.

Timothy W. Lyons, a professor of biogeochemistry at UCR and the principal investigator of the research project noted that this is a fundamentally new and potentially very important way of looking at the sulfur isotope record and its relationship to biospheric oxygenation.

"The message is that sulfur isotope records, when viewed through the filter of sedimentary recycling, may challenge efforts to precisely date the GOE and its relationship to early life, while opening the door to the wonderful unknowns we should expect and embrace," he said.

The research was supported by an O.K. Earl Postdoctoral Fellowship in the Division of Geological and Planetary Sciences at Caltech to Reinhard, a National Science Foundation postdoctoral fellowship to Planavsky, and a NASA Exobiology grant to Lyons.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>