Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers work across fields to uncover information about hadrosaur teeth

12.10.2012
An unusual collaboration between researchers in two disparate fields resulted in a new discovery about the teeth of 65-million-year-old dinosaurs.
With the help of University of Florida mechanical engineering professor W. Gregory Sawyer and UF postdoctoral researcher Brandon Krick, Florida State University paleobiologist Gregory Erickson determined the teeth of hadrosaurs — an herbivore from the late Cretaceous period — had six tissues in their teeth instead of two. The results were published in the journal Science Oct. 5.

“When something has been in the ground 65 million years, by and large we pick it up and we look at it and say, ‘oh, look at what has been preserved.’ But we don’t mechanically interrogate fossils to see if there is other information,” Sawyer said. “When we started to mechanically interrogate these teeth, what we found was all of these properties were preserved, and one other thing: these teeth were a lot more complicated than we thought.”

For years, Erickson, who has a background in biomechanical engineering and studies bone biomechanics as a paleobiologist, had thought so. So he turned to the UF Tribology Laboratory, which researches the science of friction and surface wear.

Engineers don’t often see the interesting paleontological questions, Sawyer said. One look at the surface of the dinosaur teeth piqued his interest, however, because he is intrigued by how wear occurs across surfaces with different materials. The shape of the tooth made him think it was much more complex than previously thought.

From an engineering perspective, Sawyer said his lab often works with composites that contain different material properties that wear differently, so the question was whether just two materials — enamel and dentine — would wear the way the hadrosaur teeth did. Sawyer and Krick thought not, and turned to nanoindenters and microtribometers.

Just a decade ago, a paleontologist might not have asked engineers for help, and they could not have helped him. In the last 10 years, however, Sawyer said advances in engineering — tribology and nanoscience, in particular — make it possible to test more materials, even those millions of years old.

Erickson said reptilian dinosaurs have been dismissed as simplistic creatures in their feeding and dental structure. They were herbivores, their teeth composed of enamel and dentine. The fossil record did little to contradict that.

Testing with nanoindenters and microtribometers, however, proved the conventional wisdom wrong.

“Hadrosaurs’ teeth were incredibly complicated, among the most complex of any animal,” Sawyer said. “These dinosaurs had developed a lot of tricks.”

The duck-billed hadrosaur was a toothy creature with up to 1,400 teeth, Erickson said. The teeth migrated across the chewing surface, with sharp, enamel-edged front teeth moving sideways to become grinding teeth as the teeth matured. The adaptation allowed hadrosaurs to bite off chunks of bark and stems and chew them to a digestible mush, leading Erickson to describe them as “walking pulp mills.” The teeth wore down at the rate of 1 millimeter per day, cycling through the jaw like a conveyor belt, before falling out or being swallowed. The dinosaurs lost about 1,800 teeth a year, leaving behind plenty of fossils for testing.

When the fossils emerged from batteries of tests, the researchers found six tissues in the tooth structure, not two.

“Modern tools told us there were different materials in there,” said Sawyer, who is also a UF Research Foundation Professor and Distinguished Teaching Scholar.

Erickson said the work could not have been accomplished without Sawyer’s lab, “arguably the best tribological lab in the world,” and said he is excited about the possibilities for new avenues of research. There are drawers full of fossils in collections around the world that may have more information to yield.

Sawyer agrees, and says that more engineering data could well be buried in fossils.

“Perhaps now it makes sense to take some of that fossil record, when we have other pieces of the record, and start to do things like sectioning and histology,” Sawyer said. “There are opportunities now with modern scientific tools to probe their mechanical and tribological properties. If we treat a fossil as a modern material, what happens? Do the mechanical properties track?”

The collaborative nature of the Florida university system was a key to getting the work done, Sawyer said, as was the funding his research gets from the University of Florida Foundation.

“It took us five years to do this because it was always a side project and wasn’t funded. We could chew on it at our own pace,” Sawyer said. “This is exactly what you hope for when you endow research, that people will take those funds and do things that are scientifically significant.”

Credits
WriterCindy SpenceContactW. Gregory Sawyer, wgsawyer@ufl.eduContactBrandon Krick, bakrick@ufl.eduContactGregory Erickson, gerickson@bio.fsu.edu

W. Gregory Sawyer | EurekAlert!
Further information:
http://www.ufl.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>