Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers witness overnight breakup, retreat of Greenland glacier

13.07.2010
NASA-funded researchers monitoring Greenland's Jakobshavn Isbrae glacier report that a 7 square kilometer (2.7 square mile) section of the glacier broke up on July 6 and 7, as shown in the image above. The calving front – where the ice sheet meets the ocean – retreated nearly 1.5 kilometers (a mile) in one day and is now further inland than at any time previously observed. The chunk of lost ice is roughly one-eighth the size of Manhattan Island, New York.

Research teams led by Ian Howat of the Byrd Polar Research Center at Ohio State University and Paul Morin, director of the Antarctic Geospatial Information Center at the University of Minnesota have been monitoring satellite images for changes in the Greenland ice sheet and its outlet glaciers. While this week's breakup itself is not unusual, Howat noted, detecting it within hours and at such fine detail is a new phenomenon for scientists.

"While there have been ice breakouts of this magnitude from Jakonbshavn and other glaciers in the past, this event is unusual because it occurs on the heels of a warm winter that saw no sea ice form in the surrounding bay," said Thomas Wagner, cryospheric program scientist at NASA Headquarters. "While the exact relationship between these events is being determined, it lends credence to the theory that warming of the oceans is responsible for the ice loss observed throughout Greenland and Antarctica."

The researchers relied on imagery from several satellites, including Landsat, Terra, and Aqua, to get a broad view of ice changes at both poles. Then, in the days leading up to the breakup, the team received images from DigitalGlobe's WorldView 2 satellite showing large cracks and crevasses forming.

DigitalGlobe Inc. provides the images as part of a public-private partnership with U.S. scientists. Howat and Morin are receiving near-daily satellite updates from the Jakobshavn, Kangerlugssuaq, and Helheim glaciers (among the islands largest) and weekly updates on smaller outlet glaciers.

Jakobshavn Isbrae is located on the west coast of Greenland at latitude 69°N and has been retreated more than 45 kilometers (27 miles) over the past 160 years, 10 kilometers (6 miles) in just the past decade. As the glacier has retreated, it has broken into a northern and southern branch. The breakup this week occurred in the north branch.

Scientists estimate that as much as 10 percent of all ice lost from Greenland is coming through Jakobshavn, which is also believed to be the single largest contributor to sea level rise in the northern hemisphere. Scientists are more concerned about losses from the south branch of the Jakobshavn, as the topography is flatter and lower than in the northern branch.

In addition to the remote sensing work, Howat, Morin, and other researchers have been funded by NASA and the National Science Foundation to plant GPS sensors, cameras, and other scientific equipment on top of the ice sheet to monitor changes and understand the fundamental workings of the ice. NASA also has been conducting twice-yearly airborne campaigns to the Arctic and Antarctic through the IceBridge program and measuring ice loss with the ICESat and GRACE satellites.

Steve Cole | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/jakobshavn2010.html

Further reports about: Antarctic Predators Greenland Isbrae NASA ice loss ice sheet

More articles from Earth Sciences:

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

nachricht Weather extremes: Humans likely influence giant airstreams
27.03.2017 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>