Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers witness overnight breakup, retreat of Greenland glacier

13.07.2010
NASA-funded researchers monitoring Greenland's Jakobshavn Isbrae glacier report that a 7 square kilometer (2.7 square mile) section of the glacier broke up on July 6 and 7, as shown in the image above. The calving front – where the ice sheet meets the ocean – retreated nearly 1.5 kilometers (a mile) in one day and is now further inland than at any time previously observed. The chunk of lost ice is roughly one-eighth the size of Manhattan Island, New York.

Research teams led by Ian Howat of the Byrd Polar Research Center at Ohio State University and Paul Morin, director of the Antarctic Geospatial Information Center at the University of Minnesota have been monitoring satellite images for changes in the Greenland ice sheet and its outlet glaciers. While this week's breakup itself is not unusual, Howat noted, detecting it within hours and at such fine detail is a new phenomenon for scientists.

"While there have been ice breakouts of this magnitude from Jakonbshavn and other glaciers in the past, this event is unusual because it occurs on the heels of a warm winter that saw no sea ice form in the surrounding bay," said Thomas Wagner, cryospheric program scientist at NASA Headquarters. "While the exact relationship between these events is being determined, it lends credence to the theory that warming of the oceans is responsible for the ice loss observed throughout Greenland and Antarctica."

The researchers relied on imagery from several satellites, including Landsat, Terra, and Aqua, to get a broad view of ice changes at both poles. Then, in the days leading up to the breakup, the team received images from DigitalGlobe's WorldView 2 satellite showing large cracks and crevasses forming.

DigitalGlobe Inc. provides the images as part of a public-private partnership with U.S. scientists. Howat and Morin are receiving near-daily satellite updates from the Jakobshavn, Kangerlugssuaq, and Helheim glaciers (among the islands largest) and weekly updates on smaller outlet glaciers.

Jakobshavn Isbrae is located on the west coast of Greenland at latitude 69°N and has been retreated more than 45 kilometers (27 miles) over the past 160 years, 10 kilometers (6 miles) in just the past decade. As the glacier has retreated, it has broken into a northern and southern branch. The breakup this week occurred in the north branch.

Scientists estimate that as much as 10 percent of all ice lost from Greenland is coming through Jakobshavn, which is also believed to be the single largest contributor to sea level rise in the northern hemisphere. Scientists are more concerned about losses from the south branch of the Jakobshavn, as the topography is flatter and lower than in the northern branch.

In addition to the remote sensing work, Howat, Morin, and other researchers have been funded by NASA and the National Science Foundation to plant GPS sensors, cameras, and other scientific equipment on top of the ice sheet to monitor changes and understand the fundamental workings of the ice. NASA also has been conducting twice-yearly airborne campaigns to the Arctic and Antarctic through the IceBridge program and measuring ice loss with the ICESat and GRACE satellites.

Steve Cole | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/jakobshavn2010.html

Further reports about: Antarctic Predators Greenland Isbrae NASA ice loss ice sheet

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>