Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers witness overnight breakup, retreat of Greenland glacier

13.07.2010
NASA-funded researchers monitoring Greenland's Jakobshavn Isbrae glacier report that a 7 square kilometer (2.7 square mile) section of the glacier broke up on July 6 and 7, as shown in the image above. The calving front – where the ice sheet meets the ocean – retreated nearly 1.5 kilometers (a mile) in one day and is now further inland than at any time previously observed. The chunk of lost ice is roughly one-eighth the size of Manhattan Island, New York.

Research teams led by Ian Howat of the Byrd Polar Research Center at Ohio State University and Paul Morin, director of the Antarctic Geospatial Information Center at the University of Minnesota have been monitoring satellite images for changes in the Greenland ice sheet and its outlet glaciers. While this week's breakup itself is not unusual, Howat noted, detecting it within hours and at such fine detail is a new phenomenon for scientists.

"While there have been ice breakouts of this magnitude from Jakonbshavn and other glaciers in the past, this event is unusual because it occurs on the heels of a warm winter that saw no sea ice form in the surrounding bay," said Thomas Wagner, cryospheric program scientist at NASA Headquarters. "While the exact relationship between these events is being determined, it lends credence to the theory that warming of the oceans is responsible for the ice loss observed throughout Greenland and Antarctica."

The researchers relied on imagery from several satellites, including Landsat, Terra, and Aqua, to get a broad view of ice changes at both poles. Then, in the days leading up to the breakup, the team received images from DigitalGlobe's WorldView 2 satellite showing large cracks and crevasses forming.

DigitalGlobe Inc. provides the images as part of a public-private partnership with U.S. scientists. Howat and Morin are receiving near-daily satellite updates from the Jakobshavn, Kangerlugssuaq, and Helheim glaciers (among the islands largest) and weekly updates on smaller outlet glaciers.

Jakobshavn Isbrae is located on the west coast of Greenland at latitude 69°N and has been retreated more than 45 kilometers (27 miles) over the past 160 years, 10 kilometers (6 miles) in just the past decade. As the glacier has retreated, it has broken into a northern and southern branch. The breakup this week occurred in the north branch.

Scientists estimate that as much as 10 percent of all ice lost from Greenland is coming through Jakobshavn, which is also believed to be the single largest contributor to sea level rise in the northern hemisphere. Scientists are more concerned about losses from the south branch of the Jakobshavn, as the topography is flatter and lower than in the northern branch.

In addition to the remote sensing work, Howat, Morin, and other researchers have been funded by NASA and the National Science Foundation to plant GPS sensors, cameras, and other scientific equipment on top of the ice sheet to monitor changes and understand the fundamental workings of the ice. NASA also has been conducting twice-yearly airborne campaigns to the Arctic and Antarctic through the IceBridge program and measuring ice loss with the ICESat and GRACE satellites.

Steve Cole | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/jakobshavn2010.html

Further reports about: Antarctic Predators Greenland Isbrae NASA ice loss ice sheet

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>