Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unravel the drivers of large iceberg movement

11.04.2017

Tabular icebergs can drift through the Southern Ocean for eight years or more, and predominantly melt at the bottom

When, in the foreseeable future, a tabular iceberg nearly seven times the size of Berlin breaks off the Larsen C Ice Shelf in the Antarctic, it will begin a journey, the course of which climate researchers at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research can accurately predict.


Tabular iceberg

Photo: Alfred-Wegener-Institut / T. Ronge

The researchers have now succeeded in modelling how Antarctic icebergs drift through the Southern Ocean, and in identifying the physical factors behind their movement and their melting. Which factors are most important tends to depend on the size of the iceberg in question. Their findings were recently released on the online portal of the Journal of Geophysical Research: Oceans.

Polar researchers around the globe are currently watching the Antarctic Peninsula with bated breath. On the Larsen C Ice Shelf, a massive iceberg has begun to break off from the rest. The future iceberg will be roughly 175 kilometres long, and will measure 50 kilometres across at its widest point.

As such, it will have a total surface area of nearly 6,000 km2, making it seven times the size of the greater Berlin metropolitan area. Further, at ca. 1,300 gigatonnes, the colossus will weigh nearly as much as all of the new icebergs formed in the Antarctic in the course of an average year.

It is virtually impossible to predict exactly when ice masses of this size will calve. However, climate researchers at the Alfred Wegener Institute can now better predict how small, medium-sized, and large icebergs will drift through the Southern Ocean once they have broken off from their ice shelf, and which physical factors are responsible for their movements – these factors can vary greatly, depending on their size.

Winds blow the dwarfs out to the open sea, while the giants remain near the coast

“Icebergs that aren’t longer or wider than two kilometres normally drift away from the ice shelf edge and out of coastal waters within a few months. The wind pushes them out to the open sea, where they ultimately break up into smaller pieces and melt in the course of two to three years,” explains Thomas Rackow, a climate modeller at the Alfred Wegener Institute in Bremerhaven and first author of the new study.

When it comes to mammoths on the scale of the Larsen C candidate, the wind is largely irrelevant. Instead, the icebergs’ motion is chiefly driven by their own weight, and by the fact that the surface of the Southern Ocean is not flat, but instead leans typically to the north. As a result, sea level can be up to 0.5 metres higher on the southern edge of the Weddell Sea or along the Antarctic Peninsula than at its centre. As Rackow elaborates, “When large icebergs drift, they initially slide down the inclined ocean surface, but not along a straight line; they tend to veer to the left. This is due to the Coriolis force, which is a consequence of the Earth’s rotation and ultimately puts the icebergs on a course parallel to the coast, one similar to the Antarctic Coastal Current.”

Heading north – on one of four highways

The deflecting effect of the Coriolis force also explains why large tabular icebergs linger near the coast for the first three or four years. Many only make their way to the open sea once the Antarctic Coastal Current leads them away from the coast – or once they become trapped in pack ice, and the wind drives pack ice and iceberg collectively away from the coast. “In this way, even the large tabular icebergs end up in more northerly ocean regions with warmer water,” says Rackow.

Once in warmer waters, especially the tabular icebergs start to melt at the bottom and, depending on their point of origin, follow one of the four “highways” that transport all floating ice in the Antarctic northwards. One of these iceberg highways follows the eastern coast of the Antarctic Peninsula, leading from the Weddell Sea toward the Atlantic. There is a second “exit” at the Prime Meridian, on the eastern edge of the Weddell Sea – at roughly the same point where Germany’s Antarctic research station Neumayer III is located on the Ekström Ice Shelf. The third exit is at the Kerguelen Plateau in the eastern Antarctic, while the fourth leads the ice northwards from the Ross Sea (see graphic at http://www.awi.de/nc/ueber-uns/service/presse.html).

Once they have begun their journey north, some large icebergs make it as far as the 60th parallel south, covering thousands of kilometres before they disappear. Some have even been sighted off the coasts of South America and New Zealand.

How far the future Larsen C iceberg will drift depends on whether it remains intact after calving, or quickly breaks up into smaller pieces. Further, the iceberg may run aground for a time. According to Rackow, “If it doesn’t break up, chances are good that it will first drift for about a year through the Weddell Sea, along the coast of the Antarctic Peninsula. Then it will most likely follow a northeasterly course, heading roughly for South Georgia and the South Sandwich Islands.”

Given its massive weight, the Larsen C iceberg will likely survive for eight to ten years; according to the computer model, that’s the maximum life expectancy for even the largest “white wanderers”.

For the new study, Thomas Rackow and his colleagues fed actual position and size data of 6,912 Antarctic icebergs into the Finite Element Sea Ice-Ocean Model FESOM, which they combined with a dynamic-thermodynamic iceberg model (both of which were developed at the AWI). The researchers subsequently simulated how the icebergs would drift and melt over a twelve-year timespan. The potential routes produced by the model were then compared with actual data on large icebergs from the Antarctic Iceberg Tracking Database, and with positioning data from GPS transmitters that the AWI had installed on various icebergs in the Weddell Sea in the years 2000 and 2002.

“The primary goal of our study was to understand in which region of the Southern Ocean the large icebergs melt, adding massive quantities of freshwater in the process. The fact that we have now also succeeded in unravelling the fundamental mechanisms so thoroughly is a wonderful extra bonus,” Rackow concludes.

Notes for Editors:

The study was published under the following title in the AGU magazine Journal of Geophysical Research: Oceans:
Thomas Rackow, Christine Wesche, Ralph Timmermann, Hartmut H. Hellmer, Stephan Juricke, Thomas Jung: A simulation of small to giant Antarctic iceberg evolution: Differential impact on climatology estimates, Journal of Geophysical Research – Oceans, DOI: 10.1002/2016JC012513 (Link: http://dx.doi.org/10.1002/2016JC012513)

Thomas Rackow will also present these new findings at the 2017 General Assembly of the European Geoscience Union (EGU 2017, 23-28 April) in Vienna. Journalists who wish to speak with him at the event can reserve a room through the EGU Press Centre. For more information, please visit: http://media.egu.eu/

Printable images can be found in the online version of this press release at: http://www.awi.de/nc/ueber-uns/service/presse.html

Your scientific contact person at the Alfred Wegener Institute is Dr Thomas Rackow, tel: +49 (0)471 4831 - 1877 (e-mail: Thomas.Rackow(at)awi.de).

At the AWI’s Communications and Media Relations department, Ms Sina Löschke (tel: +49 (0)471 4831 - 2008; e-mail: medien(at)awi.de) will be pleased to help you with any questions.

The Alfred Wegener Institute pursues research in the Arctic, Antarctic and the oceans of the middle and high latitudes. It coordinates polar research in Germany, while also providing essential infrastructure for the international scientific community, including the research ice-breaker Polarstern and stations in the Arctic and Antarctic. The Alfred Wegener Institute is one of the 18 Research Centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de/

More articles from Earth Sciences:

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

nachricht Ice stream draining Greenland Ice Sheet sensitive to changes over past 45,000 years
14.05.2018 | Oregon State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>