Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Turn to Technology to Discover a Novel Way of Mapping Landscapes

29.10.2013
Using computer technology to map patterns of land cover reveals types of landscapes and holds applications for numerous fields in research and planning.

University of Cincinnati researchers are blending technology with tradition, as they discover new and improved methods for mapping landscapes.

The research is newly published in the Journal of Applied Geography (Vol. 45, December 2013) by UC authors Jacek Niesterowicz, a doctoral student in the geography department, and Professor Tomasz Stepinski, the Thomas Jefferson Chair of Space Exploration in the McMicken College of Arts and Sciences (A&S).

The researchers say the analysis is the first to use a technology from a field of machine vision to build a new map of landscape types – a generalization of a popular land cover/land use map. Whereas land cover/land use pertains to physical material at, or utilization of, the local piece of Earth’s surface, a landscape type pertains to a pattern or a mosaic of different land covers over a larger neighborhood.

Machine vision is a subfield of computer science devoted to analyzing and understanding the content of images. A role of a machine vision algorithm is to “see” and interpret images as close to human vision interpretation as possible. Previous uses of the technology have focused on medicine, industry and government, ranging from robotics to face detection.

The UC research focused on a very large map of land cover/land use, called the National Land Cover Database 2006, developed by the U.S. Geological Survey.

Niesterowicz says he developed and applied machine vision-based algorithms to map landscape types in an area of northern Georgia that he selected because of the diverse patterns of land cover. The result allowed the researchers to discover and differentiate 15 distinctive landscape types, including separating forests by their domination of different plant species.

“Before now, people would do this mapping by hand, but if you had 10 maps drawn by 10 people, they would all be different,” says Stepinski.

Niesterowicz says the information uncovered by auto-mapping of landscape types would be useful for a number of fields, ranging from geographic research to land management, urban planning and conservation.

“The good thing about this method is that it doesn’t need to be restricted to land cover or other physical variables – it can be applied as well to socio-economic data, such as U.S. Census data, for example,” says Niesterowicz.

“It’s an entirely new way to conduct geographic research,” says Stepinski. “By leveraging technology developed in the field of computer science, it’s possible to make geography searchable by content. Using this technique, for example, we can quickly discover (using Web-based applications on our website) that farms in Minnesota are on average larger than farms in Ohio, and ask why that is.”

The researchers say future research will involve using the method to identify characteristic landscape types (from waterways to forests to regions influenced by human habitation) over the entire United States.

Stepinski adds that longer-term applications could involve comparisons of landscape types of other countries with those of the United States and to identify characteristic patterns of different geographical entities, such as terrain, or human patterns including socioeconomics and race.

The research out of UC’s Space Informatics Lab was supported by funding from a grant from the National Science Foundation (NSF BCS-1147702), the Polish National Science Centre (DEC-2012/07/B/ST6/012206) and by the UC Space Exploration Institute.

The UC Department of Geography’s Space Informatics Lab – created by Stepinski – develops intelligent algorithms for fast and intuitive exploration of large spatial datasets. UC’s Space Exploration Institute, funded by a $20 million gift to the university by an anonymous donor in 2007, supports numerous areas of space exploration research, including research out of the Space Informatics Lab.

UC Space Informatics Lab Website
Check other tools developed through UC research to explore large, spatial areas, including mapping.

Dawn Fuller | EurekAlert!
Further information:
http://www.uc.edu

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>