Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Turn to Technology to Discover a Novel Way of Mapping Landscapes

29.10.2013
Using computer technology to map patterns of land cover reveals types of landscapes and holds applications for numerous fields in research and planning.

University of Cincinnati researchers are blending technology with tradition, as they discover new and improved methods for mapping landscapes.

The research is newly published in the Journal of Applied Geography (Vol. 45, December 2013) by UC authors Jacek Niesterowicz, a doctoral student in the geography department, and Professor Tomasz Stepinski, the Thomas Jefferson Chair of Space Exploration in the McMicken College of Arts and Sciences (A&S).

The researchers say the analysis is the first to use a technology from a field of machine vision to build a new map of landscape types – a generalization of a popular land cover/land use map. Whereas land cover/land use pertains to physical material at, or utilization of, the local piece of Earth’s surface, a landscape type pertains to a pattern or a mosaic of different land covers over a larger neighborhood.

Machine vision is a subfield of computer science devoted to analyzing and understanding the content of images. A role of a machine vision algorithm is to “see” and interpret images as close to human vision interpretation as possible. Previous uses of the technology have focused on medicine, industry and government, ranging from robotics to face detection.

The UC research focused on a very large map of land cover/land use, called the National Land Cover Database 2006, developed by the U.S. Geological Survey.

Niesterowicz says he developed and applied machine vision-based algorithms to map landscape types in an area of northern Georgia that he selected because of the diverse patterns of land cover. The result allowed the researchers to discover and differentiate 15 distinctive landscape types, including separating forests by their domination of different plant species.

“Before now, people would do this mapping by hand, but if you had 10 maps drawn by 10 people, they would all be different,” says Stepinski.

Niesterowicz says the information uncovered by auto-mapping of landscape types would be useful for a number of fields, ranging from geographic research to land management, urban planning and conservation.

“The good thing about this method is that it doesn’t need to be restricted to land cover or other physical variables – it can be applied as well to socio-economic data, such as U.S. Census data, for example,” says Niesterowicz.

“It’s an entirely new way to conduct geographic research,” says Stepinski. “By leveraging technology developed in the field of computer science, it’s possible to make geography searchable by content. Using this technique, for example, we can quickly discover (using Web-based applications on our website) that farms in Minnesota are on average larger than farms in Ohio, and ask why that is.”

The researchers say future research will involve using the method to identify characteristic landscape types (from waterways to forests to regions influenced by human habitation) over the entire United States.

Stepinski adds that longer-term applications could involve comparisons of landscape types of other countries with those of the United States and to identify characteristic patterns of different geographical entities, such as terrain, or human patterns including socioeconomics and race.

The research out of UC’s Space Informatics Lab was supported by funding from a grant from the National Science Foundation (NSF BCS-1147702), the Polish National Science Centre (DEC-2012/07/B/ST6/012206) and by the UC Space Exploration Institute.

The UC Department of Geography’s Space Informatics Lab – created by Stepinski – develops intelligent algorithms for fast and intuitive exploration of large spatial datasets. UC’s Space Exploration Institute, funded by a $20 million gift to the university by an anonymous donor in 2007, supports numerous areas of space exploration research, including research out of the Space Informatics Lab.

UC Space Informatics Lab Website
Check other tools developed through UC research to explore large, spatial areas, including mapping.

Dawn Fuller | EurekAlert!
Further information:
http://www.uc.edu

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>