Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Turn to Technology to Discover a Novel Way of Mapping Landscapes

29.10.2013
Using computer technology to map patterns of land cover reveals types of landscapes and holds applications for numerous fields in research and planning.

University of Cincinnati researchers are blending technology with tradition, as they discover new and improved methods for mapping landscapes.

The research is newly published in the Journal of Applied Geography (Vol. 45, December 2013) by UC authors Jacek Niesterowicz, a doctoral student in the geography department, and Professor Tomasz Stepinski, the Thomas Jefferson Chair of Space Exploration in the McMicken College of Arts and Sciences (A&S).

The researchers say the analysis is the first to use a technology from a field of machine vision to build a new map of landscape types – a generalization of a popular land cover/land use map. Whereas land cover/land use pertains to physical material at, or utilization of, the local piece of Earth’s surface, a landscape type pertains to a pattern or a mosaic of different land covers over a larger neighborhood.

Machine vision is a subfield of computer science devoted to analyzing and understanding the content of images. A role of a machine vision algorithm is to “see” and interpret images as close to human vision interpretation as possible. Previous uses of the technology have focused on medicine, industry and government, ranging from robotics to face detection.

The UC research focused on a very large map of land cover/land use, called the National Land Cover Database 2006, developed by the U.S. Geological Survey.

Niesterowicz says he developed and applied machine vision-based algorithms to map landscape types in an area of northern Georgia that he selected because of the diverse patterns of land cover. The result allowed the researchers to discover and differentiate 15 distinctive landscape types, including separating forests by their domination of different plant species.

“Before now, people would do this mapping by hand, but if you had 10 maps drawn by 10 people, they would all be different,” says Stepinski.

Niesterowicz says the information uncovered by auto-mapping of landscape types would be useful for a number of fields, ranging from geographic research to land management, urban planning and conservation.

“The good thing about this method is that it doesn’t need to be restricted to land cover or other physical variables – it can be applied as well to socio-economic data, such as U.S. Census data, for example,” says Niesterowicz.

“It’s an entirely new way to conduct geographic research,” says Stepinski. “By leveraging technology developed in the field of computer science, it’s possible to make geography searchable by content. Using this technique, for example, we can quickly discover (using Web-based applications on our website) that farms in Minnesota are on average larger than farms in Ohio, and ask why that is.”

The researchers say future research will involve using the method to identify characteristic landscape types (from waterways to forests to regions influenced by human habitation) over the entire United States.

Stepinski adds that longer-term applications could involve comparisons of landscape types of other countries with those of the United States and to identify characteristic patterns of different geographical entities, such as terrain, or human patterns including socioeconomics and race.

The research out of UC’s Space Informatics Lab was supported by funding from a grant from the National Science Foundation (NSF BCS-1147702), the Polish National Science Centre (DEC-2012/07/B/ST6/012206) and by the UC Space Exploration Institute.

The UC Department of Geography’s Space Informatics Lab – created by Stepinski – develops intelligent algorithms for fast and intuitive exploration of large spatial datasets. UC’s Space Exploration Institute, funded by a $20 million gift to the university by an anonymous donor in 2007, supports numerous areas of space exploration research, including research out of the Space Informatics Lab.

UC Space Informatics Lab Website
Check other tools developed through UC research to explore large, spatial areas, including mapping.

Dawn Fuller | EurekAlert!
Further information:
http://www.uc.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>