Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers in Taiwan to use volunteer computing to visualise earthquakes

29.03.2011
Researchers in Taiwan are planning to use volunteer computing to visualise the motion of earthquakes after they occur. They hope this will cut the time of creating ‘shake movies’ from a few hours to just minutes, providing valuable information to rescuers once an earthquake has occurred.
As recent events in Japan have shown, earthquakes and their effects can have devastating consequences. For those countries located on the so-called Ring of Fire, detailed information on seismic events is vital for rescue efforts, education and outreach as well as for research into future events.

Shake movies play an important part in this effort. As animations which show the ground motion of seismic events, shake movies simulate what you feel on the ground during an earthquake. They provide information as to where the strongest shaking has occurred, helping to ensure rescue efforts and resources are directed to where they are most needed.

Researchers create shake movies by performing calculations on models of earthquakes as well as the earth’s structure. However the production process is computationally intensive, taking a few hours to create a movie on a large computing cluster.

In order to cut down the time taken to create these movies, researchers at the Institute of Earth Sciences at Academia Sinica, Taipei, plan to use volunteers to donate idle computing cycles through a new initiative called called Shakemovie@home. The initiative follows in the footsteps of other successful volunteer computing projects such as SETI@home, which searches for extra-terrestrial signals among radio telescope data.

In Shakemovie@Home volunteers’ computers will be used to retrieve essential functions needed to create new shake movies. Called Green’s functions, these elements are a key part of creating shake movies but can take a long time to calculate for every event. However as Green’s functions depend only on the earth’s model, not on the earthquakes themselves researchers can compute, save and store them in advance, simply retrieving them as and when they are needed.

As the retrieval process is simple to carry out, Academia Sinica researchers plan to farm this out to volunteers who have signed up to Shakemovie@Home. By simply retrieving, rather than calculating the Green’s function every time a new shake movie is made they will cut down the time taken from a few hours to just minutes.

“Shake movies need to be both accurate and fast so that rescue efforts can be better directed and resources better allocated. By distributing this task to volunteers to computers at home we can get a better and faster way of making shake movies. Now we have shake movies in a few hours but with volunteer computing we could have it in minutes.” says Professor Li Zhao of the Institute of Earth Sciences, Academia Sinica and leader of Shakemovie@home.

For further information please contact:
Vicky Huang
Dissemination Team
Academia Sinica Grid Computing Centre (ASGC)
Institute of Physics
Academia Sinica
vic@twgrid.org
Tel: +886-2-2789-8308
Fax: +886-2-2783-5434

Notes for editors:

About the Institute of Earth Sciences, Academia Sinica:
The Institute of Earth Sciences (IES), founded in 1982, is one of the thirty research institutes of Academia Sinica. The research programme is divided into two parts: basic research and applied research. Basic research is to improve our understanding of the earth system and applied research is to conduct natural hazard mitigation and resource management. Therefore, IES emphasises research domain in geochemistry, tectonophysics, mineral physics and seismology.
www.earth.sinica.edu.tw/en/

About e-ScienceTalk
e-ScienceTalk brings the success stories of Europe's e-infrastructure to a wider audience. The project coordinates the dissemination outputs of EGI and other European e-Infrastructure projects, ensuring their results and influence are reported in print and online. E-ScienceTalk produces e-ScienceBriefings, short, full-colour policy articles illustrating the scientific results and impacts arising from grid computing. The GridCafé website provides an introduction to grid computing and e-science for the general public. The GridGuide website gives a human face to e-Infrastructures, allowing users to listen to podcasts from grid sites worldwide and read interviews with researchers. The Real Time Monitor is a visualisation of current activity on the grid overlaid on an interactive 3D globe. International Science Grid This Week (iSGTW) is a free weekly online newsletter that promotes grid computing and e-research around the world by sharing stories of science and scientific discoveries, reaching over 7000 readers.

www.e-sciencetalk.org

Catherine Gater
Chief Administrative Officer / Dissemination Manager
EGI.eu
Science Park 105
1098 XG Amsterdam
The Netherlands
Tel: +31 (0)6 30372738
Email: catherine.gater@egi.eu
Web: www.egi.eu

Catherine Gater | EGI.eu
Further information:
http://www.earth.sinica.edu.tw/en/

More articles from Earth Sciences:

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

nachricht Weather extremes: Humans likely influence giant airstreams
27.03.2017 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>