Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers in Taiwan to use volunteer computing to visualise earthquakes

29.03.2011
Researchers in Taiwan are planning to use volunteer computing to visualise the motion of earthquakes after they occur. They hope this will cut the time of creating ‘shake movies’ from a few hours to just minutes, providing valuable information to rescuers once an earthquake has occurred.
As recent events in Japan have shown, earthquakes and their effects can have devastating consequences. For those countries located on the so-called Ring of Fire, detailed information on seismic events is vital for rescue efforts, education and outreach as well as for research into future events.

Shake movies play an important part in this effort. As animations which show the ground motion of seismic events, shake movies simulate what you feel on the ground during an earthquake. They provide information as to where the strongest shaking has occurred, helping to ensure rescue efforts and resources are directed to where they are most needed.

Researchers create shake movies by performing calculations on models of earthquakes as well as the earth’s structure. However the production process is computationally intensive, taking a few hours to create a movie on a large computing cluster.

In order to cut down the time taken to create these movies, researchers at the Institute of Earth Sciences at Academia Sinica, Taipei, plan to use volunteers to donate idle computing cycles through a new initiative called called Shakemovie@home. The initiative follows in the footsteps of other successful volunteer computing projects such as SETI@home, which searches for extra-terrestrial signals among radio telescope data.

In Shakemovie@Home volunteers’ computers will be used to retrieve essential functions needed to create new shake movies. Called Green’s functions, these elements are a key part of creating shake movies but can take a long time to calculate for every event. However as Green’s functions depend only on the earth’s model, not on the earthquakes themselves researchers can compute, save and store them in advance, simply retrieving them as and when they are needed.

As the retrieval process is simple to carry out, Academia Sinica researchers plan to farm this out to volunteers who have signed up to Shakemovie@Home. By simply retrieving, rather than calculating the Green’s function every time a new shake movie is made they will cut down the time taken from a few hours to just minutes.

“Shake movies need to be both accurate and fast so that rescue efforts can be better directed and resources better allocated. By distributing this task to volunteers to computers at home we can get a better and faster way of making shake movies. Now we have shake movies in a few hours but with volunteer computing we could have it in minutes.” says Professor Li Zhao of the Institute of Earth Sciences, Academia Sinica and leader of Shakemovie@home.

For further information please contact:
Vicky Huang
Dissemination Team
Academia Sinica Grid Computing Centre (ASGC)
Institute of Physics
Academia Sinica
vic@twgrid.org
Tel: +886-2-2789-8308
Fax: +886-2-2783-5434

Notes for editors:

About the Institute of Earth Sciences, Academia Sinica:
The Institute of Earth Sciences (IES), founded in 1982, is one of the thirty research institutes of Academia Sinica. The research programme is divided into two parts: basic research and applied research. Basic research is to improve our understanding of the earth system and applied research is to conduct natural hazard mitigation and resource management. Therefore, IES emphasises research domain in geochemistry, tectonophysics, mineral physics and seismology.
www.earth.sinica.edu.tw/en/

About e-ScienceTalk
e-ScienceTalk brings the success stories of Europe's e-infrastructure to a wider audience. The project coordinates the dissemination outputs of EGI and other European e-Infrastructure projects, ensuring their results and influence are reported in print and online. E-ScienceTalk produces e-ScienceBriefings, short, full-colour policy articles illustrating the scientific results and impacts arising from grid computing. The GridCafé website provides an introduction to grid computing and e-science for the general public. The GridGuide website gives a human face to e-Infrastructures, allowing users to listen to podcasts from grid sites worldwide and read interviews with researchers. The Real Time Monitor is a visualisation of current activity on the grid overlaid on an interactive 3D globe. International Science Grid This Week (iSGTW) is a free weekly online newsletter that promotes grid computing and e-research around the world by sharing stories of science and scientific discoveries, reaching over 7000 readers.

www.e-sciencetalk.org

Catherine Gater
Chief Administrative Officer / Dissemination Manager
EGI.eu
Science Park 105
1098 XG Amsterdam
The Netherlands
Tel: +31 (0)6 30372738
Email: catherine.gater@egi.eu
Web: www.egi.eu

Catherine Gater | EGI.eu
Further information:
http://www.earth.sinica.edu.tw/en/

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>