Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers show how far South American cities moved in quake

09.03.2010
The massive magnitude 8.8 earthquake that struck the west coast of Chile last month moved the entire city of Concepcion at least 10 feet to the west, and shifted other parts of South America as far apart as the Falkland Islands and Fortaleza, Brazil.

These preliminary measurements, produced from data gathered by researchers from four universities and several agencies, including geophysicists on the ground in Chile, paint a much clearer picture of the power behind this temblor, believed to be the fifth-most-powerful since instruments have been available to measure seismic shifts.

Buenos Aires, the capital of Argentina and across the continent from the quake’s epicenter, moved about 1 inch to the west. And Chile’s capital, Santiago, moved about 11 inches to the west-southwest. The cities of Valparaiso and Mendoza, Argentina, northeast of Concepcion, also moved significantly.

The quake’s epicenter was in a region of South America that’s part of the so-called “ring of fire,” an area of major seismic stresses which encircles the Pacific Ocean. All along this line, the tectonic plates on which the continents move press against each other at fault zones.

The February Chilean quake occurred where the Nazca tectonic plate was squeezed under, or “subducted,” below the adjacent South American plate. Quakes routinely relieve pent-up geologic pressures in these convergence zones.

The research team deduced the cities’ movement by comparing precise GPS (global positioning satellite) locations known prior to the major quake to those almost 10 days later. The US Geological Survey reported that there have been dozens of aftershocks, many exceeding magnitude 6.0 or greater, since the initial event February 27.

Mike Bevis, professor of earth sciences at Ohio State University, has led a project since 1993 that has been measuring crustal motion and deformation in the Central and Southern Andes. The effort, called the Central and Southern Andes GPS Project, or CAP, hopes to perhaps triple its current network of 25 GPS stations spread across the region.

"By reoccupying the existing GPS stations, CAP can determine the displacements, or 'jumps', that occurred during the earthquake," Bevis said. “By building new stations, the project can monitor the postseismic deformations that are expected to occur for many years, giving us new insights into the physics of the earthquake process.”

Ben Brooks, an associate researcher with the School of Ocean and Earth Science and Technology at the University of Hawaii and co-principal investigator on the project, said that the event, tragic as it was, offers a unique opportunity to better understand the seismic processes that control earthquakes.

“The Maule earthquake will arguably become one of the, if not the most important great earthquake yet studied. We now have modern, precise instruments to evaluate this event, and because the site abuts a continent, we will be able to obtain dense spatial sampling of the changes it caused.

“As such the event represents an unprecedented opportunity for the earth science community if certain observations are made with quickly and comprehensively,” Brooks said.

Working with Bevis and Brooks on the project are Bob Smalley, the University of Memphis, who is leading field operations in Argentina; Dana Caccamise at Ohio State, who is lead engineer, and Eric Kendrick, also from Ohio State, who is with Bevis now in Chile making measurements in the field.

Along with Ohio State University and the University of Hawaii, scientists from the University of Memphis and the California Institute of Technology are participating in the project. Additionally the Instituto Geografica Militar, the Universidad de Concepcion and the Centro de Estudios Cientificos, all in Chile, also were partners.

In Argentina. the Instituto Geografica Militar, the Universidad Nacional de Cuyo in Mendoza and the Unversidad Nacional de Buenos Aires are collaborating in the work. UNAVCO, a consortium of more than 50 institutions and agencies involved in research in the geosciences, is providing equipment for the project.

The researchers have constructed a map showing the relative movement of locations after the Maule, Chile earthquake. Images showing that map are available at http://researchnews.osu.edu/archive/chilequakemap.htm.

Contact: Ben Brooks (808) 228-8356; bbrooks@hawaii.edu
Written by Earle Holland, (614) 292-8384; holland.8@osu.edu

Ben Brooks | EurekAlert!
Further information:
http://www.osu.edu
http://researchnews.osu.edu/archive/chilequakemap.htm

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>