Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers report on changes in Arctic sea ice after return of RV Polarstern

06.10.2011
Young and thin instead of old and bulky: In the central Arctic the proportion of old, thick sea ice has declined significantly. Instead, the ice cover now largely consists of thin, one-year-old floes.

This is one of the results that scientists of the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association brought back from the 26th Arctic expedition of the research vessel Polarstern.

The ship arrived at its home port of Bremerhaven at about 7 o’clock this morning. Prior to that it had covered more than 11,800 nautical miles on its 16-week research voyage and accommodated around 130 scientists from six countries on the three legs. The last stage took them through the central Arctic Ocean and the Polarstern also reached the North Pole. One of the most important research questions was: Did sea ice melt to a greater extent this summer, making it thinner than in past years?

To answer it, the sea ice physicists headed by Dr. Marcel Nicolaus and Dr. Stefan Hendricks employed a measuring instrument called “EM Bird”. This nearly four-metre-long, torpedo-shaped probe is flown over the ice with a helicopter and measures the ice thickness by means of an electromagnetic induction method. In this way the sea ice physicists created an ice thickness profile of the central Arctic over a total distance of more than 2,500 flown kilometres. Their conclusion is: at sites where the sea ice was mainly composed of old, thicker ice floes in the past decades there is now primarily one-year-old ice with an average thickness of 90 centimetres. Only in the Canadian Basin and near the Severnaya Zemlya island group in northern Siberia did the sea ice physicists encounter significant amounts of several-year-old ice. As a rule, this old ice is between two and five metres thick.

Compared to their measurements from 2007, when the extent of the sea ice had diminished to a record minimum of 4.3 million square kilometres, the researchers have not yet found any differences, however. “The ice has not recovered. This summer it appears to have melted to exactly the same degree as in 2007. Yes, it is exactly as thin as in the record year,” says Hendricks.

The researchers detected significant differences in places where ice was lacking this summer – in the Laptev Sea, for example. “On our expedition in 2007 we encountered thin, newly formed ice in the Laptev Sea in September. This time, however, there was no sign of ice formation anywhere. The water temperature at a depth of ten metres was three degrees Celsius – that is how much the sun had heated the ice-free water surface,” says Prof. Dr. Ursula Schauer, scientific head of the leg through the central Arctic. However, this warming is restricted only to the top layers. In the depths of the Arctic Ocean colder water from the Atlantic currently provides for falling water temperatures.

The sea ice physicists also made major advances in connection with the question of how much sunlight penetrates through the ice. For this purpose they utilised for the first time an underwater vehicle with remote control via cable. The so-called ROV (Remotely Operated Vehicle) dived to a depth of 100 metres below the ice and made large-scale recordings of the distribution of sunlight under the ice using a spectral radiometer. “Our measurements have shown that the quantity of light under the ice depends to a considerable extent on the type of ice. Several-year-old ice lets the least amount of light through because it has few melt ponds and a thick layer of weathered ice on its surface,” says Nicolaus. One-year-old ice, by contrast, is more pervious to light, especially in areas with many melt ponds. The researchers measured the greatest amounts of light under new ice. “From these results we can conclude that the observed change from a several-year-old ice cover to a seasonal Arctic ice cover will lead to an increase in light in the Arctic Ocean, particularly in summer and autumn,” states Nicolaus.

Changes in sea ice thickness and extent also have direct consequences for the ecosystem of the Arctic Ocean. The reason is that the marginal ice zone is sort of like a “Garden of the Arctic Ocean”. Due to the melting of sea ice, algae are released from the ice into the sea. In addition, the freshwater in the ice mixes with the seawater. Since the former has a lower density than seawater, a stable stratification of the surface water occurs. As a result, the algae remain in the topmost, light-flooded water layer and start to grow. So-called algal bloom results. These algae, in turn, form the beginning of the Arctic food webs. Currently it is scientifically controversial, however, whether the Arctic Ocean will become “more productive” because of the decline in ice and the related increase in light.

Scientists like Dr. Ilka Peeken therefore investigated the biology of the algae not only in the sea ice, but also in the melt ponds and in the water column under the ice. The initial results point to regional differences: in the Atlantic part of the central Arctic the algae biomass and carbon intake, both in the ice and in the melt ponds and water column, were significantly higher than in the Pacific section.

This applies similarly to the climate-relevant trace gas methane, which may form during algal bloom. Measurements by the biogeochemists headed by Dr. Ellen Damm showed that the formation and release of the greenhouse gas are influenced by which region of the Arctic Ocean is seasonally ice-free. In addition, the researchers succeeded for the first time in verifying how much methane is oxidised to carbon dioxide in the ice.

The scientists now want to compare these and many other snapshots of the situation in summer 2011 with their results from 2007 as well as with data from the two Arctic long-term observatories of the Alfred Wegener Institute in the Fram Strait. The so-called “mooring” and the deep-sea observatory HAUSGARTEN were the destinations of the first two expedition legs. Their various measuring devices have to be replaced at regular intervals, the data must be read out on board the Polarstern and the sensors have to be recalibrated. Only in this way is it possible to record environmental changes in detail.

The Polarstern is currently at the Lloyd shipyard for routine maintenance work and is expected to set off on the next expedition to the Antarctic on 28 October 2011.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and middle latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the seventeen research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw
Further information:
http://www.awi.de
http://www.geo.de

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>