Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers report on changes in Arctic sea ice after return of RV Polarstern

06.10.2011
Young and thin instead of old and bulky: In the central Arctic the proportion of old, thick sea ice has declined significantly. Instead, the ice cover now largely consists of thin, one-year-old floes.

This is one of the results that scientists of the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association brought back from the 26th Arctic expedition of the research vessel Polarstern.

The ship arrived at its home port of Bremerhaven at about 7 o’clock this morning. Prior to that it had covered more than 11,800 nautical miles on its 16-week research voyage and accommodated around 130 scientists from six countries on the three legs. The last stage took them through the central Arctic Ocean and the Polarstern also reached the North Pole. One of the most important research questions was: Did sea ice melt to a greater extent this summer, making it thinner than in past years?

To answer it, the sea ice physicists headed by Dr. Marcel Nicolaus and Dr. Stefan Hendricks employed a measuring instrument called “EM Bird”. This nearly four-metre-long, torpedo-shaped probe is flown over the ice with a helicopter and measures the ice thickness by means of an electromagnetic induction method. In this way the sea ice physicists created an ice thickness profile of the central Arctic over a total distance of more than 2,500 flown kilometres. Their conclusion is: at sites where the sea ice was mainly composed of old, thicker ice floes in the past decades there is now primarily one-year-old ice with an average thickness of 90 centimetres. Only in the Canadian Basin and near the Severnaya Zemlya island group in northern Siberia did the sea ice physicists encounter significant amounts of several-year-old ice. As a rule, this old ice is between two and five metres thick.

Compared to their measurements from 2007, when the extent of the sea ice had diminished to a record minimum of 4.3 million square kilometres, the researchers have not yet found any differences, however. “The ice has not recovered. This summer it appears to have melted to exactly the same degree as in 2007. Yes, it is exactly as thin as in the record year,” says Hendricks.

The researchers detected significant differences in places where ice was lacking this summer – in the Laptev Sea, for example. “On our expedition in 2007 we encountered thin, newly formed ice in the Laptev Sea in September. This time, however, there was no sign of ice formation anywhere. The water temperature at a depth of ten metres was three degrees Celsius – that is how much the sun had heated the ice-free water surface,” says Prof. Dr. Ursula Schauer, scientific head of the leg through the central Arctic. However, this warming is restricted only to the top layers. In the depths of the Arctic Ocean colder water from the Atlantic currently provides for falling water temperatures.

The sea ice physicists also made major advances in connection with the question of how much sunlight penetrates through the ice. For this purpose they utilised for the first time an underwater vehicle with remote control via cable. The so-called ROV (Remotely Operated Vehicle) dived to a depth of 100 metres below the ice and made large-scale recordings of the distribution of sunlight under the ice using a spectral radiometer. “Our measurements have shown that the quantity of light under the ice depends to a considerable extent on the type of ice. Several-year-old ice lets the least amount of light through because it has few melt ponds and a thick layer of weathered ice on its surface,” says Nicolaus. One-year-old ice, by contrast, is more pervious to light, especially in areas with many melt ponds. The researchers measured the greatest amounts of light under new ice. “From these results we can conclude that the observed change from a several-year-old ice cover to a seasonal Arctic ice cover will lead to an increase in light in the Arctic Ocean, particularly in summer and autumn,” states Nicolaus.

Changes in sea ice thickness and extent also have direct consequences for the ecosystem of the Arctic Ocean. The reason is that the marginal ice zone is sort of like a “Garden of the Arctic Ocean”. Due to the melting of sea ice, algae are released from the ice into the sea. In addition, the freshwater in the ice mixes with the seawater. Since the former has a lower density than seawater, a stable stratification of the surface water occurs. As a result, the algae remain in the topmost, light-flooded water layer and start to grow. So-called algal bloom results. These algae, in turn, form the beginning of the Arctic food webs. Currently it is scientifically controversial, however, whether the Arctic Ocean will become “more productive” because of the decline in ice and the related increase in light.

Scientists like Dr. Ilka Peeken therefore investigated the biology of the algae not only in the sea ice, but also in the melt ponds and in the water column under the ice. The initial results point to regional differences: in the Atlantic part of the central Arctic the algae biomass and carbon intake, both in the ice and in the melt ponds and water column, were significantly higher than in the Pacific section.

This applies similarly to the climate-relevant trace gas methane, which may form during algal bloom. Measurements by the biogeochemists headed by Dr. Ellen Damm showed that the formation and release of the greenhouse gas are influenced by which region of the Arctic Ocean is seasonally ice-free. In addition, the researchers succeeded for the first time in verifying how much methane is oxidised to carbon dioxide in the ice.

The scientists now want to compare these and many other snapshots of the situation in summer 2011 with their results from 2007 as well as with data from the two Arctic long-term observatories of the Alfred Wegener Institute in the Fram Strait. The so-called “mooring” and the deep-sea observatory HAUSGARTEN were the destinations of the first two expedition legs. Their various measuring devices have to be replaced at regular intervals, the data must be read out on board the Polarstern and the sensors have to be recalibrated. Only in this way is it possible to record environmental changes in detail.

The Polarstern is currently at the Lloyd shipyard for routine maintenance work and is expected to set off on the next expedition to the Antarctic on 28 October 2011.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and middle latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the seventeen research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw
Further information:
http://www.awi.de
http://www.geo.de

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>