Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers refine assessment of tipping elements of the climate system

24.06.2011
The West Antarctic ice sheet is a potential tipping element of the climate system that might have partially tipped already.

According to a study now published in Climatic Change, experts can not rule out that ice masses in the Amundsen Sea sector of Antarctica have already begun to destabilize. This is one of the results of a new assessment of the current state of six potentially unstable regions in the climate system with large direct impacts on Europe. The likelihood of climatic transitions of these elements generally increases as global mean temperature increases due to greenhouse gases emitted by human activity.

“We only provide a snapshot here, but it is in some ways sharper than those taken before”, says lead-author Anders Levermann of the Potsdam Institute for Climate Impact Research. For the first time, experts on the different potential tipping elements joined as coauthors for a common review of the state of knowledge about climatic transitions. Such assessment will, by definition, permanently evolve, says Levermann. Yet, understanding of the systems in question deepens. “Understanding these processes is crucial for future societal and economical decisions. From a risk assessment perspective, science - while pointing out uncertainties - has to provide stakeholders with information on likelihoods and potential effects of climatic transitions”, Levermann says. “Wait and see is no option.”

A partial collapse of the West Antarctic ice sheet for example could be equivalent to an additional 1.5 meters sea level rise, prior research showed. Most dykes in Europe may be elevated by only one meter. Beyond this region-specific threshold significant rebuilding would be necessary. However, the disintegration of this ice sheet might take hundreds of years. Nonetheless the effects could be significant. Apart from releasing water into the oceans, melting of the West Antarctic ice sheet would change the gravitational pull to the pole. Thereby it could lead to an even stronger sea level rise on European coastlines. All of this is incorporated in the scientists’ conclusions.

Arctic sea ice and Alpine mountain glaciers are estimated to be the most vulnerable to global warming of the short list presented in the study. Amongst the impacts of Arctic sea ice retreat is its influence on the North Atlantic atmospheric pressure system and thereby the Atlantic storm track in Europe. Alpine glacier shrinking is affecting water availability in the region as the seasonality of their run-off into rivers changes. With a 2 degrees Celsius warming, only minimal remains of Alpine glaciers will be left. Yet self-acceleration can not be safely detected for these two tipping elements. Also, for instance Arctic sea ice reduction might be reversed if global mean temperature sinks - even though such a scenario is not very likely.

The risks of a tipping point in Arctic ozone depletion are assessed to become insignificant when chlorine levels drop below 1980 levels, which will occur in 2060. High uncertainty is linked to the issue of the huge overturning in the Atlantic called the thermohaline circulation. Its potential collapse could be caused by freshwater inflows from Greenland ice sheet melting and changes in precipitation patterns. As insight in these changes is still limited, the likelihood of transition as well as the confidence in the assessment does not increase with temperature.

“Possible linkages of tipping elements make it even more advisable to use a risk management approach when dealing with global warming”, says Tim Lenton of the University of Exeter, UK, one of the authors. For example, a likely weakening of the thermohaline circulation in the Atlantic could lead to a warming of waters around Antarctica and shift the subpolar wind belt, inducing changes in ice sheet melting. “Those linkages are complex and are in urgent need of further exploration”, says Lenton.

Other tipping elements such as the Himalayan glaciers, Indian monsoon, or the thawing of Siberian permafrost, are beyond the scope of this study. They don’t have direct impact on Europe, the study says. However, an indirect impact is likely.

The term ‘tipping elements’ is defined as a strong response to small external perturbation. This might lead to the public misconception, some coauthors argue, that the change is always sudden and not reversible. While most tipping elements include such dynamic processes with self-amplification, they are not restricted to these. “The defining issue is the high sensitivity to changes in the background climate which poses a risk that society needs to be aware of”, Levermann says.

Article: Levermann, A., Bamber, J., Drijfhout, S., Ganopolski, A., Haeberli, W., Harris, N., Huss, M., Krüger, K., Lenton, T., Lindsay, R., Notz, D., Wadhams. P., Weber, S.: Potential climatic transitions with profound impact on Europe, Review of the current state of six ‘tipping elements of the climate system’. Climatic Change (2011) [DOI 10.1007/s10584-011-0126-5]

Weblink to article: http://www.springerlink.com/content/t435328g93882946/fulltext.pdf

Further Reading

Lenton, Timothy: Early warning of climate tipping points. Nature Climate Change (2011) [DOI: 10.1038/nclimate1143]

Weblink to article: http://www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate1143.html

E. Kriegler. J. Hall, H. Held, R. Dawson, H.-J. Schellnhuber (2009) Imprecise probability assessment of tipping points in the climate system. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 106(13): 5041-5046, Link: http://www.pnas.org/content/early/2009/03/13/0809117106.abstract

T. Lenton, H. Held, E. Kriegler, J.W. Hall, H. Held, R. Dawson, H.-J. Schellnhuber (2008) Tipping element's in the earth's climate system. Proceedings of the National Academy of Sciences USA, 105: 1786-1793, Link: http://www.pnas.org/content/105/6/1786.full

For further information please contact:

Potsdam Institute for Climate Impact Research, press office
Phone: +49 (0)331 288 2507
E-Mail: press@pik-potsdam.de

Mareike Schodder | PIK Potsdam
Further information:
http://www.pik-potsdam.de

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>