Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers predict greener Greenland

28.08.2013
In 2100, a warmer climate will allow growth of trees and bushes in large parts of that Greenland, which is currently ice-free

Scientists expect the future climate to become warmer, and that this will apply to the Arctic in particular. Here the temperature is expected to increase considerably more than the average on Earth, according to the Intergovernmental Panel on Climate Change average scenario (A1B).


This image shows forest planted in southern Greenland (Qanassiassat) from 1953 onwards. With the expected climate change by 2100, scientists expect that forest of this kind will be able to grow in large parts of the current ice-free areas in the southern half of Greenland.

Credit: Photo: Anders Ræbild.


This is Tongass National Forest, Alaska. The researchers predict that in the future forests of this type can grow in the southern parts of Greenland.

Credit: Photo: John Schoen, Anchorage.

What will this mean for Greenland? A very significant change will be the emergence of forests, where there are currently only four species of trees and large bushes indigenous to Greenland – and they only grow in small areas in the south.

An international research group including Professor of Biology Jens-Christian Svenning, Aarhus University, has analysed which species will be able to grow in the climate expected in Greenland in 2100. The analysis shows that a majority of 44 relevant species of North American and European trees and bushes will be able to grow in Greenland in the future.

In fact, the analysis points to the fact that a considerable number of species would already be able to grow in Greenland today. This is supported by actual experiments, where various species of trees have been planted in Greenland, including Siberian larch, white spruce, lodgepole pine and Eastern balsam poplar.

By the end of the century, a key species like the Arctic dwarf birch will probably be able to find suitable habitats in most areas of Greenland that are currently ice-free, far beyond its current distribution. Here we are talking about more than 400,000 square kilometres, or an area almost the size of Sweden.

Opportunities for Greenlanders

The researchers conclude that southern Greenland and the area around Kangerlussuaq (Søndre Strømfjord) already have the potential to become much greener, with a forest flora corresponding to that occurring during former interglacial periods. With the expected climate change by 2100, scientists expect that such flora should be able to grow in large parts of the ice-free areas in the southern half of Greenland.

“In other words, Greenland has the potential to become a lot greener,” says Professor Svenning. The new opportunities for trees and bushes may oust Arctic animals and plants, but could also be beneficial to the Greenlanders.

“Forests like the coastal coniferous forests in today’s Alaska and western Canada will be able to thrive in fairly large parts of Greenland, with trees such as Sitka spruce and lodgepole pine. This will provide new opportunities for the population of Greenland. For example, we see that people use wood wherever there is forest. This could also create new opportunities for activities such as hunting and the commercial exploitation of berries. Forest and scrub will also reduce erosion and affect water run-off,” says Professor Svenning.

Trees spread slowly

Why are the trees not already in place in Greenland? Partly because most trees only spread slowly by themselves, but also because Greenland is very isolated. The researchers’ models show that it will take more than 2000 years for Greenland’s indigenous species of trees to spread to all those areas of the country that will have a suitable climate by 2100.

In Greenland, some species arrived relatively quickly after the last Ice Age, while other species that rely on dispersal by birds or wind first arrived a couple of thousand years later. However, the researchers’ analysis shows that most plants have not yet utilised the Greenlandic countryside following the last Ice Age, and that the man-made climate change will rapidly create further opportunities for the plants. Taking advantage of this will be a slow process on their own, however.

Humans will play a deciding role

Professor Svenning indicates that humans will play a crucial role when trees and bushes naturally spread so slowly.

“People often plant utility and ornamental plants where they can grow. I believe it lies in our human nature. Such plantings could have a huge impact on the Greenlandic countryside of the future as a source of dissemination. This certainly has positive aspects.

But it would also be wise to be cautious, and thereby avoid some of the problems we’ve seen at our latitudes with invasive species such as giant hogweed and rugosa rose. The Greenlandic countryside will be far more susceptible to introduced species in future than it is today. So if importing and planting species takes place without any control, this could lead to nature developing in a very chaotic way, reminiscent of the Klondike,” warns Professor Svenning.

The work to implement the analyses was carried out by Signe Normand. She was educated at Aarhus University, and is returning in February 2014 to take up a position as assistant professor without a fixed term. She is currently working at the Swiss Federal Research Institute for Forest, Snow and Landscape (WSL).

Please contact

Professor Jens-Christian Svenning, Department of Bioscience, Aarhus University, tel. +45 8715 6571, mobile +45 2899 2304, svenning@biology.au.dk

Link

A greener Greenland? Climatic potential and long-term constraints on future expansions of trees and shrubs. Normand S. et al. 2013. Phil Trans R Soc B 20120479.

http://dx.doi.org/10.1098/rstb.2012.0479

Photos:

Photo 1: On a picnic in Greenland
Forest planted in southern Greenland (Qanassiassat) from 1953 onwards. With the expected climate change by 2100, scientists expect that forests of this kind will be able to grow in large parts of the current ice-free areas in the southern half of Greenland. Photo: Anders Ræbild.
Photo 4: Coastal forest in Alaska
Tongass National Forest, Alaska. The researchers predict that forests of this type will be able to grow in the southern parts of Greenland in the future. Photo: John Schoen, Anchorage.
Photo 5: JCS
Professor Jens-Christian Svenning in Grand Teton National Park, Wyoming, USA. Engelmann spruce can be seen in the background – one of the species that has been planted successfully in Greenland. According to the researchers’ models, they will be able to thrive in large parts of southern Greenland in a future warmer climate. Photo: Else Magård, Aarhus University.
Photo 6: Sn
Postdoctoral Fellow Signe Normand doing fieldwork at the bottom of Nuup Kangerlua fjord (Nuuk inlet). She headed the work to analyse the possibilities for the future increment in Greenland, www.signenormand.net. Photo: Urs Treier.

Jens-Christian Svenning | EurekAlert!
Further information:
http://www.au.dk

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>