Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers predict greener Greenland

28.08.2013
In 2100, a warmer climate will allow growth of trees and bushes in large parts of that Greenland, which is currently ice-free

Scientists expect the future climate to become warmer, and that this will apply to the Arctic in particular. Here the temperature is expected to increase considerably more than the average on Earth, according to the Intergovernmental Panel on Climate Change average scenario (A1B).


This image shows forest planted in southern Greenland (Qanassiassat) from 1953 onwards. With the expected climate change by 2100, scientists expect that forest of this kind will be able to grow in large parts of the current ice-free areas in the southern half of Greenland.

Credit: Photo: Anders Ræbild.


This is Tongass National Forest, Alaska. The researchers predict that in the future forests of this type can grow in the southern parts of Greenland.

Credit: Photo: John Schoen, Anchorage.

What will this mean for Greenland? A very significant change will be the emergence of forests, where there are currently only four species of trees and large bushes indigenous to Greenland – and they only grow in small areas in the south.

An international research group including Professor of Biology Jens-Christian Svenning, Aarhus University, has analysed which species will be able to grow in the climate expected in Greenland in 2100. The analysis shows that a majority of 44 relevant species of North American and European trees and bushes will be able to grow in Greenland in the future.

In fact, the analysis points to the fact that a considerable number of species would already be able to grow in Greenland today. This is supported by actual experiments, where various species of trees have been planted in Greenland, including Siberian larch, white spruce, lodgepole pine and Eastern balsam poplar.

By the end of the century, a key species like the Arctic dwarf birch will probably be able to find suitable habitats in most areas of Greenland that are currently ice-free, far beyond its current distribution. Here we are talking about more than 400,000 square kilometres, or an area almost the size of Sweden.

Opportunities for Greenlanders

The researchers conclude that southern Greenland and the area around Kangerlussuaq (Søndre Strømfjord) already have the potential to become much greener, with a forest flora corresponding to that occurring during former interglacial periods. With the expected climate change by 2100, scientists expect that such flora should be able to grow in large parts of the ice-free areas in the southern half of Greenland.

“In other words, Greenland has the potential to become a lot greener,” says Professor Svenning. The new opportunities for trees and bushes may oust Arctic animals and plants, but could also be beneficial to the Greenlanders.

“Forests like the coastal coniferous forests in today’s Alaska and western Canada will be able to thrive in fairly large parts of Greenland, with trees such as Sitka spruce and lodgepole pine. This will provide new opportunities for the population of Greenland. For example, we see that people use wood wherever there is forest. This could also create new opportunities for activities such as hunting and the commercial exploitation of berries. Forest and scrub will also reduce erosion and affect water run-off,” says Professor Svenning.

Trees spread slowly

Why are the trees not already in place in Greenland? Partly because most trees only spread slowly by themselves, but also because Greenland is very isolated. The researchers’ models show that it will take more than 2000 years for Greenland’s indigenous species of trees to spread to all those areas of the country that will have a suitable climate by 2100.

In Greenland, some species arrived relatively quickly after the last Ice Age, while other species that rely on dispersal by birds or wind first arrived a couple of thousand years later. However, the researchers’ analysis shows that most plants have not yet utilised the Greenlandic countryside following the last Ice Age, and that the man-made climate change will rapidly create further opportunities for the plants. Taking advantage of this will be a slow process on their own, however.

Humans will play a deciding role

Professor Svenning indicates that humans will play a crucial role when trees and bushes naturally spread so slowly.

“People often plant utility and ornamental plants where they can grow. I believe it lies in our human nature. Such plantings could have a huge impact on the Greenlandic countryside of the future as a source of dissemination. This certainly has positive aspects.

But it would also be wise to be cautious, and thereby avoid some of the problems we’ve seen at our latitudes with invasive species such as giant hogweed and rugosa rose. The Greenlandic countryside will be far more susceptible to introduced species in future than it is today. So if importing and planting species takes place without any control, this could lead to nature developing in a very chaotic way, reminiscent of the Klondike,” warns Professor Svenning.

The work to implement the analyses was carried out by Signe Normand. She was educated at Aarhus University, and is returning in February 2014 to take up a position as assistant professor without a fixed term. She is currently working at the Swiss Federal Research Institute for Forest, Snow and Landscape (WSL).

Please contact

Professor Jens-Christian Svenning, Department of Bioscience, Aarhus University, tel. +45 8715 6571, mobile +45 2899 2304, svenning@biology.au.dk

Link

A greener Greenland? Climatic potential and long-term constraints on future expansions of trees and shrubs. Normand S. et al. 2013. Phil Trans R Soc B 20120479.

http://dx.doi.org/10.1098/rstb.2012.0479

Photos:

Photo 1: On a picnic in Greenland
Forest planted in southern Greenland (Qanassiassat) from 1953 onwards. With the expected climate change by 2100, scientists expect that forests of this kind will be able to grow in large parts of the current ice-free areas in the southern half of Greenland. Photo: Anders Ræbild.
Photo 4: Coastal forest in Alaska
Tongass National Forest, Alaska. The researchers predict that forests of this type will be able to grow in the southern parts of Greenland in the future. Photo: John Schoen, Anchorage.
Photo 5: JCS
Professor Jens-Christian Svenning in Grand Teton National Park, Wyoming, USA. Engelmann spruce can be seen in the background – one of the species that has been planted successfully in Greenland. According to the researchers’ models, they will be able to thrive in large parts of southern Greenland in a future warmer climate. Photo: Else Magård, Aarhus University.
Photo 6: Sn
Postdoctoral Fellow Signe Normand doing fieldwork at the bottom of Nuup Kangerlua fjord (Nuuk inlet). She headed the work to analyse the possibilities for the future increment in Greenland, www.signenormand.net. Photo: Urs Treier.

Jens-Christian Svenning | EurekAlert!
Further information:
http://www.au.dk

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>