Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Make First Direct Observations of Biological Particles in High-Altitude Ice Clouds

19.05.2009
Airborne dust and microbial matter appear to play large role in ice formation in clouds.

A team of UC San Diego-led atmospheric chemistry researchers moved closer to what is considered the "holy grail" of climate change science when it made the first-ever direct detection of biological particles within ice clouds.

The team, led by Kerri Pratt, a Ph.D. student of atmospheric chemistry Professor Kim Prather, who also holds appointments at Scripps Institution of Oceanography as well as the Department of Chemistry and Biochemistry at UCSD, sampled water droplet and ice crystal residues at high speeds from an aircraft flying through clouds in the skies over Wyoming in fall 2007.

Analysis of the ice crystals revealed that they were made up almost entirely of either dust or biological particles such as bacteria, fungal spores and plant material. While it has long been known that microorganisms or parts of them get airborne and travel great distances, this study is the first to yield in-situ data on their participation in cloud ice processes.

Results of the Ice in Clouds Experiment - Layer Clouds (ICE-L), funded by the National Science Foundation (NSF) and the National Center for Atmospheric Research (NCAR), appear May 17 in the advance online edition of the journal Nature Geoscience.

"If we understand the sources of particles that nucleate clouds and their relative abundance, then we can determine the impact of these different sources on climate," said Pratt.

The effects of tiny airborne particles called aerosols on cloud formation have been some of the most difficult aspects of weather and climate for scientists to understand. In the climate change science field, which derives many of its projections from computer simulations of climate phenomena, the actions of aerosols on clouds represent what scientists consider the greatest uncertainty in modeling predictions for the future.

"By sampling clouds in real time from an aircraft, these investigators were able to get information about ice particles in clouds at an unprecedented level of detail," said Anne-Marine Schmoltner of the NSF's Division of Atmospheric Sciences. "By determining the chemical composition of the very cores of individual ice particles, they discovered that both mineral dust, and, surprisingly, biological particles play a major role in the formation of clouds."

Aerosols, ranging from dust, soot, sea salt to organic materials, some of which travel thousands of miles, form the skeletons of clouds. Around these nuclei, water and ice in the atmosphere condense and grow leading to precipitation. Scientists are trying to understand how they form as clouds play a critical role by both cooling the atmosphere and affect regional precipitation processes.

ICE-L was the first aircraft-based deployment of the aircraft aerosol time-of-flight mass spectrometer (A-ATOFMS) nicknamed "Shirley," which was recently developed at UCSD with funding from NSF. The ICE-L team mounted the mass spectrometer and an ice chamber run by Colorado State University researcher Paul DeMott onto a C-130 aircraft operated by NCAR and made a series of flights through a type of cloud known as a wave cloud. The researchers performed in-situ measurements of cloud ice crystal residues and found that half were mineral dust and about a third contained nitrogen, phosphorus and carbon - the signature elements of biological matter.

The second-by-second analysis speed allowed the researchers to make distinctions between residues of water droplets and ice nuclei in real-time. Ice nuclei are rarer than droplet nuclei and are more likely to create precipitation.

The A-ATOFMS also allowed the unambiguous measurement of biological particles in the cloud ice, which scientists previously concluded serve as ice nuclei based on simulations in laboratory experiments and precipitation measurements. Based on modeling and the chemical composition of measured dust, the ICE-L team was able to identify the source of the dust as Asia or Africa. "This has really been kind of a holy grail measurement for us," said Prather. "Understanding which particles form ice nuclei, which occur at extremely low concentrations and are inherently difficult to measure, means you can further understand processes that result in precipitation. Any new piece of information you can get is critical."

The findings suggest that the biological particles that get swept up in dust storms help to induce the formation of cloud ice and that their region of origin makes a difference. Prather said initial evidence is increasingly suggesting that dust transported from Asia could be influencing precipitation in North America, for example. Researchers hope to use the ICE-L data to design future studies timed to events when such particles may be playing a bigger role in triggering rain- or snowfall.

Paper co-authors include Anthony Prenni from Colorado State University, Jeffrey French and Zhien Wang of the University of Wyoming, Douglas Westphal of the Naval Research Laboratory in Monterey, Calif., Andrew Heymsfield of the National Center for Atmospheric Research and Cynthia Twohy of Oregon State University.

Note to broadcast and cable producers: University of California, San Diego provides an on-campus satellite uplink facility for live or pre-recorded television interviews. Please phone or e-mail the media contact listed above to arrange an interview.

Scripps Institution of Oceanography, at University of California, San Diego, is one of the oldest, largest and most important centers for global science research and education in the world. The National Research Council has ranked Scripps first in faculty quality among oceanography programs nationwide. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,300, and annual expenditures of approximately $155 million from federal, state and private sources. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration.

Robert Monroe | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>