Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Make First Direct Observations of Biological Particles in High-Altitude Ice Clouds

Airborne dust and microbial matter appear to play large role in ice formation in clouds.

A team of UC San Diego-led atmospheric chemistry researchers moved closer to what is considered the "holy grail" of climate change science when it made the first-ever direct detection of biological particles within ice clouds.

The team, led by Kerri Pratt, a Ph.D. student of atmospheric chemistry Professor Kim Prather, who also holds appointments at Scripps Institution of Oceanography as well as the Department of Chemistry and Biochemistry at UCSD, sampled water droplet and ice crystal residues at high speeds from an aircraft flying through clouds in the skies over Wyoming in fall 2007.

Analysis of the ice crystals revealed that they were made up almost entirely of either dust or biological particles such as bacteria, fungal spores and plant material. While it has long been known that microorganisms or parts of them get airborne and travel great distances, this study is the first to yield in-situ data on their participation in cloud ice processes.

Results of the Ice in Clouds Experiment - Layer Clouds (ICE-L), funded by the National Science Foundation (NSF) and the National Center for Atmospheric Research (NCAR), appear May 17 in the advance online edition of the journal Nature Geoscience.

"If we understand the sources of particles that nucleate clouds and their relative abundance, then we can determine the impact of these different sources on climate," said Pratt.

The effects of tiny airborne particles called aerosols on cloud formation have been some of the most difficult aspects of weather and climate for scientists to understand. In the climate change science field, which derives many of its projections from computer simulations of climate phenomena, the actions of aerosols on clouds represent what scientists consider the greatest uncertainty in modeling predictions for the future.

"By sampling clouds in real time from an aircraft, these investigators were able to get information about ice particles in clouds at an unprecedented level of detail," said Anne-Marine Schmoltner of the NSF's Division of Atmospheric Sciences. "By determining the chemical composition of the very cores of individual ice particles, they discovered that both mineral dust, and, surprisingly, biological particles play a major role in the formation of clouds."

Aerosols, ranging from dust, soot, sea salt to organic materials, some of which travel thousands of miles, form the skeletons of clouds. Around these nuclei, water and ice in the atmosphere condense and grow leading to precipitation. Scientists are trying to understand how they form as clouds play a critical role by both cooling the atmosphere and affect regional precipitation processes.

ICE-L was the first aircraft-based deployment of the aircraft aerosol time-of-flight mass spectrometer (A-ATOFMS) nicknamed "Shirley," which was recently developed at UCSD with funding from NSF. The ICE-L team mounted the mass spectrometer and an ice chamber run by Colorado State University researcher Paul DeMott onto a C-130 aircraft operated by NCAR and made a series of flights through a type of cloud known as a wave cloud. The researchers performed in-situ measurements of cloud ice crystal residues and found that half were mineral dust and about a third contained nitrogen, phosphorus and carbon - the signature elements of biological matter.

The second-by-second analysis speed allowed the researchers to make distinctions between residues of water droplets and ice nuclei in real-time. Ice nuclei are rarer than droplet nuclei and are more likely to create precipitation.

The A-ATOFMS also allowed the unambiguous measurement of biological particles in the cloud ice, which scientists previously concluded serve as ice nuclei based on simulations in laboratory experiments and precipitation measurements. Based on modeling and the chemical composition of measured dust, the ICE-L team was able to identify the source of the dust as Asia or Africa. "This has really been kind of a holy grail measurement for us," said Prather. "Understanding which particles form ice nuclei, which occur at extremely low concentrations and are inherently difficult to measure, means you can further understand processes that result in precipitation. Any new piece of information you can get is critical."

The findings suggest that the biological particles that get swept up in dust storms help to induce the formation of cloud ice and that their region of origin makes a difference. Prather said initial evidence is increasingly suggesting that dust transported from Asia could be influencing precipitation in North America, for example. Researchers hope to use the ICE-L data to design future studies timed to events when such particles may be playing a bigger role in triggering rain- or snowfall.

Paper co-authors include Anthony Prenni from Colorado State University, Jeffrey French and Zhien Wang of the University of Wyoming, Douglas Westphal of the Naval Research Laboratory in Monterey, Calif., Andrew Heymsfield of the National Center for Atmospheric Research and Cynthia Twohy of Oregon State University.

Note to broadcast and cable producers: University of California, San Diego provides an on-campus satellite uplink facility for live or pre-recorded television interviews. Please phone or e-mail the media contact listed above to arrange an interview.

Scripps Institution of Oceanography, at University of California, San Diego, is one of the oldest, largest and most important centers for global science research and education in the world. The National Research Council has ranked Scripps first in faculty quality among oceanography programs nationwide. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,300, and annual expenditures of approximately $155 million from federal, state and private sources. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration.

Robert Monroe | Newswise Science News
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>