Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find Substantial Water Pollution Risks From “Fracking” to Recover Natural Gas

08.08.2012
Stony Brook University scientists have found that the disposal of contaminated wastewater from hydraulic fracturing – commonly known as “fracking” – wells producing natural gas in the Marcellus Shale region poses substantial potential risks of river and other water pollution that suggests additional regulation to reduce the potential of drinking water contamination.
In a paper titled “Water Pollution Risk Associated with Natural Gas Extraction from the Marcellus Shale,” which appears in the August 2012 issue of the journal Risk Analysis, published by the Society for Risk Analysis, Stony Brook doctoral student Daniel Rozell, P.E., and Sheldon Reaven, Ph.D., a professor in the Department of Technology and Society and the School of Marine and Atmospheric Sciences, found that “Even in a best case scenario, an individual well would potentially release at least 200 m3 of contaminated fluids.”

Fracking involves pumping fluids underground into shale formations to release pockets of natural gas, which are then pumped to the surface. The Marcellus Shale region covers approximately 124,000 square kilometers from New York to West Virginia and is being intensely developed.

The researchers found that disposal of the large amounts of fracking well wastewater presents risks from salts and radioactive materials that are “several orders of magnitude larger” than for other potential water pollution pathways examined in the new study. Other water pollution pathways studied include a tanker truck spilling its contents while transporting fluids used in the drilling process going to or from a well site; a well casing failing and leaking fluids to groundwater; fracturing fluids traveling through underground fractures into drinking water; and drilling site spills at the surface caused by improper handling of fluids or leaks from storage tanks and retention ponds.

The disposal of used hydraulic fracturing fluids through industrial wastewater treatment facilities can lead to elevated pollution levels in rivers and streams because many treatment facilities “are not designed to handle hydraulic fracturing wastewater containing high concentrations of salts or radioactivity two or three orders of magnitude in excess of federal drinking water standards,” according to the researchers. The wastewater disposal risks dwarf the other water risks, although the authors say “a rare, but serious retention pond failure could generate a very large contaminated water discharge to local waters.”
In trying to understand the likelihood and consequences of water contamination in the Marcellus Shale region from fracking operations, Rozell and Reaven use an analytical approach called “probability bounds analysis” that is suitable “when data are sparse and parameters highly uncertain.” The analysis delineates best case/worse case scenarios that risk managers can use “to determine if a desirable or undesirable outcome resulting from a decision is even possible,” and to assess “whether the current state of knowledge is appropriate for making a decision,” according to the authors.

The authors found that “Any drilling or fracturing fluid is suspect for the purposes of this study” because “even a benign hydraulic fracturing fluid is contaminated once it comes into contact with the Marcellus Shale.” They suggest that “regulators should explore the option of mandating alternative fracturing methods to reduce the wastewater usage and contamination from shale gas extraction in the Marcellus Shale.” These would include various alternatives such as nitrogen-based or liquefied petroleum gas fracturing methods that would substantially reduce the amount of wastewater generated.

The authors concluded that “future research efforts should be focused primarily on wastewater disposal and specifically on the efficacy of contaminant removal by industrial and municipal wastewater treatment facilities.”

Office of Media Relations | Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>