Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find Link Between the Input of Iron and Biological Productivity in the Ancient Pacific Ocean

16.03.2012
A team of researchers has just published a new paper, lead authored by Boston University Professor of Earth Sciences Richard W. Murray, that provides compelling evidence from marine sediment that supports the theory that iron in the Earth’s oceans has a direct impact on biological productivity, potentially affecting the amount of carbon dioxide in the atmosphere and, in turn, atmospheric temperature. These findings have been published in the March 11, 2012 online edition of the journal Nature Geoscience (DOI: 10.1038/NGEO1422). (See www.nature.com/naturegeoscience.)

The oceans are the world's largest inventory of reactive carbon. Over time, oceanic carbon exchanges with the atmospheric reservoir of carbon in the form of carbon dioxide (CO2). Much of the carbon present in the surface oceans is taken up by the growth of marine plants (primarily by phytoplankton) through photosynthesis. Consequently, marine biological productivity is recognized as a factor in determining the amount of atmospheric carbon dioxide at various times in the Earth’s history.

The magnitude of ocean biological productivity depends on the availability of key nutrients, including nitrogen, phosphorous and metals such as iron. In fact, previous research has established that biological productivity in the equatorial Pacific and the oceans around Antarctica is limited by the amount of iron, a micro-nutrient, more than by the better-known 'major' nutrients nitrogen and phosphorus.

The link between iron and marine biological productivity first gained attention more than twenty years ago with the publication of a controversial paper by the late John Martin, an oceanographer at the at the Moss Landing Marine Laboratories (California State University). Martin’s “Iron Hypothesis” postulates that biological productivity could be stimulated by increasing the amount of iron in the ocean, which in turn would draw down atmospheric carbon dioxide. He further argued that this process contributed to ancient ice ages: When the earth was drier and therefore dustier, more iron was deposited in the oceans, thus stimulating biological productivity, reducing atmospheric carbon dioxide and cooling the earth (the inverse of global warming). This could result in prolonged glacial periods. By closely examining the sedimentary record, Murray and his colleagues have established a clear relationship between plant plankton (diatoms) and the input of iron, exactly as Martin predicted.

Many researchers since Martin have established that the availability of iron in the modern ocean determines the amount of biological production in high-nutrient, low-chlorophyll regions and may be important in lower-nutrient settings as well. By examining the paleo-oceanographic record of iron input and the deposition of diatoms, Murray and his colleagues found that the ancient system is highly consistent with what occurs in the oceans today.

The new publication provides an important sedimentary record from the high-nutrient, low-chlorophyll region of the equatorial Pacific Ocean, and shows strong links between iron input and the export and burial of biogenic silica (opal produced from diatoms) over the past million years. Although the direct relationship to climate remains unclear, data collected by the team demonstrate that iron accumulation is more closely tied to the accumulation of opal than any other biogenic component, and that high iron input closely correlates with substantially increased opal sedimentation. The strong links between iron and opal accumulation in the past are in agreement with the modern biogeochemical behavior of iron and silica, and the response of the diatom community to their mutual availability, all of which supports Martin’s postulate of a biological response to iron delivery over long timescales.

The co-authors of this study are Margaret Leinen, Executive Director, Harbor Branch Oceanographic Institution and Associate Provost for Marine and Environmental Initiatives, Florida Atlantic University, and Christopher W. Knowlton, Graduate School of Oceanography, University of Rhode Island, Narragansett. Murray first began working on these research ideas while a post-doctoral researcher in Leinen’s laboratory at the University of Rhode Island in the 1990’s, and Knowlton is a former graduate student of Leinen’s who studied the opal distribution in these sediments.

About Boston University—Founded in 1839, Boston University is an internationally recognized private research university with more than 30,000 students participating in undergraduate, graduate, and professional programs. As Boston University’s largest academic division, the College and Graduate School of Arts & Sciences is the heart of the BU experience with a global reach that enhances the University’s reputation for teaching and research.

Richard W. Murray, Professor
Department of Earth Sciences
Boston University
685 Commonwealth Avenue
Boston, MA 02215
Office Phone (617) 353-6532
Email rickm@bu.edu

Richard W. Murray, Professor | Newswise Science News
Further information:
http://www.bu.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>