Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find Link Between the Input of Iron and Biological Productivity in the Ancient Pacific Ocean

16.03.2012
A team of researchers has just published a new paper, lead authored by Boston University Professor of Earth Sciences Richard W. Murray, that provides compelling evidence from marine sediment that supports the theory that iron in the Earth’s oceans has a direct impact on biological productivity, potentially affecting the amount of carbon dioxide in the atmosphere and, in turn, atmospheric temperature. These findings have been published in the March 11, 2012 online edition of the journal Nature Geoscience (DOI: 10.1038/NGEO1422). (See www.nature.com/naturegeoscience.)

The oceans are the world's largest inventory of reactive carbon. Over time, oceanic carbon exchanges with the atmospheric reservoir of carbon in the form of carbon dioxide (CO2). Much of the carbon present in the surface oceans is taken up by the growth of marine plants (primarily by phytoplankton) through photosynthesis. Consequently, marine biological productivity is recognized as a factor in determining the amount of atmospheric carbon dioxide at various times in the Earth’s history.

The magnitude of ocean biological productivity depends on the availability of key nutrients, including nitrogen, phosphorous and metals such as iron. In fact, previous research has established that biological productivity in the equatorial Pacific and the oceans around Antarctica is limited by the amount of iron, a micro-nutrient, more than by the better-known 'major' nutrients nitrogen and phosphorus.

The link between iron and marine biological productivity first gained attention more than twenty years ago with the publication of a controversial paper by the late John Martin, an oceanographer at the at the Moss Landing Marine Laboratories (California State University). Martin’s “Iron Hypothesis” postulates that biological productivity could be stimulated by increasing the amount of iron in the ocean, which in turn would draw down atmospheric carbon dioxide. He further argued that this process contributed to ancient ice ages: When the earth was drier and therefore dustier, more iron was deposited in the oceans, thus stimulating biological productivity, reducing atmospheric carbon dioxide and cooling the earth (the inverse of global warming). This could result in prolonged glacial periods. By closely examining the sedimentary record, Murray and his colleagues have established a clear relationship between plant plankton (diatoms) and the input of iron, exactly as Martin predicted.

Many researchers since Martin have established that the availability of iron in the modern ocean determines the amount of biological production in high-nutrient, low-chlorophyll regions and may be important in lower-nutrient settings as well. By examining the paleo-oceanographic record of iron input and the deposition of diatoms, Murray and his colleagues found that the ancient system is highly consistent with what occurs in the oceans today.

The new publication provides an important sedimentary record from the high-nutrient, low-chlorophyll region of the equatorial Pacific Ocean, and shows strong links between iron input and the export and burial of biogenic silica (opal produced from diatoms) over the past million years. Although the direct relationship to climate remains unclear, data collected by the team demonstrate that iron accumulation is more closely tied to the accumulation of opal than any other biogenic component, and that high iron input closely correlates with substantially increased opal sedimentation. The strong links between iron and opal accumulation in the past are in agreement with the modern biogeochemical behavior of iron and silica, and the response of the diatom community to their mutual availability, all of which supports Martin’s postulate of a biological response to iron delivery over long timescales.

The co-authors of this study are Margaret Leinen, Executive Director, Harbor Branch Oceanographic Institution and Associate Provost for Marine and Environmental Initiatives, Florida Atlantic University, and Christopher W. Knowlton, Graduate School of Oceanography, University of Rhode Island, Narragansett. Murray first began working on these research ideas while a post-doctoral researcher in Leinen’s laboratory at the University of Rhode Island in the 1990’s, and Knowlton is a former graduate student of Leinen’s who studied the opal distribution in these sediments.

About Boston University—Founded in 1839, Boston University is an internationally recognized private research university with more than 30,000 students participating in undergraduate, graduate, and professional programs. As Boston University’s largest academic division, the College and Graduate School of Arts & Sciences is the heart of the BU experience with a global reach that enhances the University’s reputation for teaching and research.

Richard W. Murray, Professor
Department of Earth Sciences
Boston University
685 Commonwealth Avenue
Boston, MA 02215
Office Phone (617) 353-6532
Email rickm@bu.edu

Richard W. Murray, Professor | Newswise Science News
Further information:
http://www.bu.edu

More articles from Earth Sciences:

nachricht Water cooling for the Earth's crust
22.11.2017 | Helmholtz Centre for Ocean Research Kiel (GEOMAR)

nachricht Retreating permafrost coasts threaten the fragile Arctic environment
22.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>