Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find evidence of groundwater in Antarctica's Dry Valleys

29.04.2015

Using a novel, helicopter-borne sensor to penetrate below the surface of large swathes of terrain, a team of researchers supported by the National Science Foundation, or NSF, has gathered compelling evidence that beneath the Antarctica ice-free McMurdo Dry Valleys lies a salty aquifer that may support previously unknown microbial ecosystems and retain evidence of ancient climate change.

The team, which includes LSU hydrogeologist Peter Doran and researchers from the University of Tennessee; University of California-Santa Cruz; Dartmouth College; University of Illinois at Chicago; University of Wisconsin; Aarhus University in Denmark; and Sorbonne Universités, UPMC University in France, found that brines, or salty water, form extensive aquifers below glaciers, lakes and within permanently frozen soils. Their discovery will be featured in the April 28 edition of the open-access journal Nature Communications.

"These unfrozen materials appear to be relics of past surface ecosystems, and our findings provide compelling evidence that they now provide deep subsurface habitats for microbial life despite extreme environmental conditions," said the study's lead author Jill Mikucki, an assistant professor of microbiology at the University of Tennessee Knoxville. "We believe the application of novel below-ground visualization technologies can not only reveal hidden microbial habitats, but can also provide insight on glacial dynamics and how Antarctica responds to climate change."

In addition to providing answers about the biological adaptations of previously unknown ecosystems that persist in the extreme cold and dark of the Antarctic winter, the new information could also help scientists understand whether similar conditions might exist elsewhere in the solar system, specifically beneath the surface of Mars, which has many similarities to the dry valleys.

"Over billions of years of evolution, microbes seem to have adapted to conditions in almost all surface and near-surface environments on Earth. Tiny pore spaces filled with hyper-saline brine staying liquid down to -15 Celsius, or 5 degrees Fahrenheit, may pose one of the greatest challenges to microbes," said Slawek Tulacyzk, a glaciologist and coauthor at the University of California, Santa Cruz. "Our electromagnetic data indicates that margins of Antarctica may shelter a vast microbial habitat, in which limits of life are tested by difficult physical and chemical conditions."

The team also found evidence that brines flow towards the Antarctic coast from roughly 11 miles inland, eventually discharging into the Southern Ocean. It is possible that nutrients from microbial weathering in these deep brines are released, effecting near-shore biological productivity. However, the vast majority of Antarctica's coastal margins remain unexplored. This new survey highlights the importance of these sensitive interfaces.

The Division of Polar Programs in NSF's Geoscience's Directorate supported the AEM sensor project through a collaborative award to Mikucki, Tulacyzk and Ross Virginia, a biogeochemist at Dartmouth College. The division manages the U.S. Antarctic Program, through which it coordinates all U.S. scientific research on the Southernmost Continent and provides the logistical support to that research.

The researchers used a transient electromagnetic AEM sensor called SkyTEM, mounted to a helicopter, to produce extensive imagery of the subsurface of the coldest, driest desert on our planet, the McMurdo Dry Valleys. Using a helicopter to make the observations allowed large areas of rugged terrain to be efficiently surveyed.

The results shed new light on the history and evolution of the dry valley landscape, which, uniquely in the Antarctic is ice-free and which during the height of the southern summer has free-flowing rivers and streams. The dry valleys are also home to briny lakes at the surface and beneath at least one of the glaciers that intrude into the Valleys.

"Prior to this discovery, we considered the lakes to all be isolated from one another and the ocean, but this new data suggests that there is a connection between the lakes and the ocean, which is very interesting and potentially a game changer in how we view the geochemistry and history of the lakes," said Doran, LSU professor of geology & geophysics and John Franks Endowed Chair.

Doran, the first to hold the John Franks Endowed Chair in geology & geophysics, is a natural fit for this research team in that the ground water system examined in this study is closely associated with the perennially ice covered lakes in the region that he has been studying for more than 20 years.

Doran joined the research team after the data was collected and assisted with the data interpretation.

"The first phase of this research was a proof of concept study and we definitely proved the concept," he said, adding that the team is in the process of writing a new proposal to NSF to continue their work.

Overall, the dry valleys ecosystem -- cold, vegetation-free and home only to microscopic animal and plant life -- resembles, during the Antarctic summer, conditions on the surface on Mars.

In addition to many other studies, the dry valleys are home to projects that are investigating how climate has changed over geologic time.

"This project is studying the past and present climate to, in part, understand how climate change in the future will affect biodiversity and ecosystem processes," said Virginia. "This fantastic new view beneath the surface will help us sort out competing ideas and theories about how the dry valleys have changed with time and how this history influences what we see today."

The AEM sensor, which was developed at Aarhus University in Denmark, was flown over the Taylor Glacier, one of the best-studied glaciers in the world, in November 2011. The glacier has a unique feature known as Blood Falls, where iron-rich brine from the subsurface is released at the front of the glacier. Blood Falls is known to harbor an active microbial community, where organisms use iron and sulfur compounds for energy and growth and in the process facilitate rock weathering.

The AEM team believes that the newly discovered brines harbor similar microbial communities persisting in the deep, cold dark aquifers. AEM instrumentation lead Esben Auken has flown the sensor all over the world, but this was the first time they tackled Antarctica.

"Antarctica is by far the most challenging place we have been." Auken said. "It was all worth it when we saw the raw data as it was offloaded from the helicopter. It clearly showed we were on to some extraordinary results, which no one had been able to produce before. We were excited because we knew this would change the way scientists in the future would view the hydrological cycle in the dry valleys. For us, the project was the result of many years of developing the best mapping technology in the world, and now we were able to collaborate with scientists who had worked in the Antarctic environment for decades and were willing to take the risk of letting us prove this could be done with success."

###

Related Links:

Washington Post Article: http://www.washingtonpost.com/news/speaking-of-science/wp/2015/04/28/the-dry-valleys-of-antarctica-may-actually-have-subsurface-water-full-of-life/

National Science Foundation: http://www.youtube.com/watch?v=5plXAKlpDkQ&feature=youtu.be

Media Contact

Tara Kistler
tkistler@lsu.edu
225-578-3869

 @LSUResearchNews

http://www.lsu.edu 

Tara Kistler | EurekAlert!

Further reports about: Antarctic Antarctica GLACIERS dark helicopter microbial

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>